Способы отбора
На практике применяются различные способы отбора. Принципиально эти способы можно подразделить на два вида:
1. Отбор, не требующий расчленения генеральной совокупности на части. Сюда относятся: а) простой случайный бесповторный отбор; б) простой случайный повторный отбор.
2. Отбор, при котором генеральная совокупность разбивается на части. Сюда относятся: а) типический отбор; б) механический отбор; в) серийный отбор.
Простым случайным называют такой отбор, при котором объекты извлекают по одному из всей генеральной совокупности. Осуществить простой отбор можно различными способами. Например, для извлечения n объектов из генеральной совокупности объема N поступают так: выписывают номера от 1 до N на карточках, которые тщательно перемешивают, и наугад вынимают одну карточку; объект, имеющий одинаковый номер с извлеченной карточкой, подвергают обследованию; затем карточку возвращают в пачку и процесс повторяют, т. е. карточки перемешивают, наугад вынимают одну из них и т. д. Так поступают п раз; в итоге получают простую случайную повторную выборку объема n.
Если извлеченные карточки не возвращать в пачку, то выборка является простой случайной бесповторной.
При большом объеме генеральной совокупности описанный процесс оказывается очень трудоемким. В этом случае пользуются готовыми таблицами «случайных чисел», в которых числа расположены в случайном порядке. Для того чтобы отобрать, например, 50 объектов из пронумерованной генеральной совокупности, открывают любую страницу таблицы случайных чисел и выписывают подряд 50 чисел; в выборку попадают те объекты, номера которых совпадают с выписанными случайными числами.
Если бы оказалось, что случайное число таблицы превышает число N, то такое случайное число пропускают.
При осуществлении бесповторной выборки случайные числа таблицы, уже встречавшиеся ранее, следует также пропустить.
Типическим называют отбор, при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типической» части. Например, если детали изготовляют на нескольких станках, то отбор производят не из всей совокупности деталей, произведенных всеми станками, а из продукции каждого станка в отдельности.
Типическим отбором пользуются тогда, когда обследуемый признак заметно колеблется в различных типических частях генеральной совокупности. Например, если продукция изготовляется на нескольких машинах, среди которых есть более и менее изношенные, то здесь типический отбор целесообразен.
Механическим называют отбор, при котором генеральную совокупность «механически» делят на столько групп, сколько объектов должно войти в выборку, а из каждой группы отбирают один объект. Например, если нужно отобрать 20% изготовленных станком деталей, то отбирают каждую пятую деталь; если требуется отобрать 5% деталей, то отбирают каждую двадцатую деталь, и т. д.
Следует указать, что иногда механический отбор может не обеспечить репрезентативности выборки. Например, если отбирают каждый двадцатый обтачиваемый валик, причем сразу же gосле отбора производят замену резца, то отобранными окажутся все валики, обточенные затупленными резцами. В таком случае следует устранить совпадение ритма отбора с ритмом замены резца, для чего надо отбирать, скажем, каждый десятый валик из двадцати обточенных.
Серийным называют отбор, при котором объекты отбирают из генеральной совокупности не по одному, а «сериями», которые подвергаются сплошному обследованию. Например, если изделия изготовляются большой группой станков-автоматов, то подвергают сплошному обследованию продукцию только нескольких станков.
Серийным отбором пользуются тогда, когда обследуемый признак колеблется в различных сериях незначительно.
Подчеркнем, что на практике часто применяется комбинированный отбор, при котором сочетаются указанные выше способы. Например, иногда разбивают генеральную совокупность на серии одинакового объема, затем простым случайным отбором выбирают несколько серий и, наконец, из каждой серии простым случайным отбором извлекают отдельные объекты.
Источник
Схемы отбора в выборку
Схема отбора в выборку — это детальное описание того, какие данные и каким способом будут получены. Есть много схем для отбора в выборку, поэтому нужно выбрать для исследований такую, которая даст наиболее репрезентативные результаты. Репрезентативность выборки — это соответствие характеристик выборки характеристикам популяции.
В идеале лучше работать со всей генеральной совокупностью, но это занимает много времени и ресурсов. Поэтому можно исследовать только ее часть, что и называется выборкой. Затем исследуются элементы, которые попали в выборку. На основе полученных значений оцениваются неизвестные элементы выборки.
Основные принципы отбора в выборку
Идея состоит в том, чтобы перенести результаты на всю генеральную совокупность. Поэтому выборка должна быть репрезентативной. Другими словами она пропорциональна как подгруппам, так и всей совокупности, и не исключает каких-либо отдельных групп.
Выборка должна быть настолько большой, насколько это возможно, чтобы избежать ошибочных суждений. По сути выборкой может быть любое подмножество генеральной совокупности.
Если выборка недостаточно репрезентативна — исследование будет считаться предвзятым. Если она будет недостаточно большой — неточным.
Если правильно подобрать связь между выборкой и совокупностью, тогда можно сделать правильные заключения о природе всей совокупности. Лучше быть возможно правым, чем точно не правым.
Схемы отбора для вероятностных выборок
Вероятностные выборки подразумевают, что исследователь абсолютно уверен в связях выборки с генеральной совокупностью. Если же связи не прослеживаются или в наличии имеются не все элементы генеральной совокупности используется невероятностная выборка.
На основе жеребьевки
Схема отбора состоит в том, чтобы провести ряд испытаний без возвращения элемента в генеральную совокупность. Каждый элемент совокупности имеет одинаковые шансы попасть в выборку.
Из генеральной совокупности N случайным образом отбирается один элемент, вероятность попадания элемента в выборку равна 1/N. Затем из выборки N-1 выбирается второй элемент с вероятностью 1/(N-1) и так далее до n-го элемента с вероятностью 1/(N-n).
Источник
Способы отбора и виды выборки
В теории выборочного метода разработаны различные способы отбора и виды выборки, обеспечивающие репрезентативность.
Различают два способа отбора: повторный и бесповторный. При повторном отборе каждая отобранная в случайном порядке единица после ее обследования возвращается в генеральную совокупность и при последующем отборе может снова попасть в выборку. Этот способ отбора построен по схеме «возвращенного шара». При таком способе отбора вероятность попасть в выборку для каждой единицы генеральной совокупности не меняется независимо от числа отбираемых единиц. При бесповторном отборе каждая единица, отобранная в случайном порядке, после ее обследования в генеральную совокупность не возвращается. Этот способ отбора построен по схеме «невозвращенного шара». Вероятность попасть в выборку для каждой единицы генеральной совокупности увеличивается по мере производства отбора.
Собственно случайная выборка формируется в строгом соответствии с научными принципами и правилами случайного отбора. Для получения собственно-случайной выборки генеральная совокупность строго подразделяется на единицы отбора, и затем в случайном повторном или бесповторном порядке отбирается достаточное число единиц.
При бесповторном способе отбора расчета стандартной ошибки осуществляется с помощью формулы:
– доля единиц генеральной совокупности, не попавших в выборку.
Так как эта доля всегда меньше единицы, то ошибка при бесповторном отборе при прочих равных условиях всегда меньше, чем при повторном. Бесповторный отбор практически организовать всегда легче, чем повторный, и он применяется чаще.
Довольно часто генеральная совокупность такая большая, что провести подобную предварительную работу чрезвычайно сложно и нецелесообразно. Поэтому на практике применяют другие виды выборок, каждая из которых не является строго случайной. Однако организуются они так, чтобы было обеспечено максимальное приближение к условиям случайного отбора.
При чисто механической выборке вся генеральная совокупность единиц должна быть прежде всего представлена в виде списка единиц отбора, составленного в каком-то нейтральном по отношению к изучаемому признаку порядке, например по алфавиту. Затем список единиц отбора разбивается на столько равных частей, сколько необходимо отобрать единиц. Далее по заранее установленному правилу, не связанному с вариацией исследуемого признака, из каждой части списка отбирается одна единица. Этот вид выборки не всегда может обеспечить случайный характер отбора, и полученная выборка может оказаться смещенной.
Объясняется это тем, что, во-первых, упорядочение единиц генеральной совокупности может иметь элемент неслучайного характера.
Во-вторых, отбор из каждой части генеральной совокупности при неправильном установлении начала отсчета может также привести к ошибке смещения. Однако практически легче организовать механическую выборку, чем собственно случайную, и при проведении выборочных обследований чаще всего пользуются этим видом выборки.
Типическая (районированная, стратифицированная) выборка преследует две цели:
- обеспечить представительство в выборке соответствующих типических групп генеральной совокупности по интересующим исследователя признакам;
- увеличить точность результатов выборочного обследования.
При типической выборке до начала ее формирования генеральная совокупность единиц разбивается на типические группы. При этом очень важным моментом является правильный выбор группировочного признака. Выделенные типические группы могут содержать одинаковое или различное число единиц отбора. В первом случае выборочная совокупность формируется с одинаковой долей отбора из каждой группы, во втором – с долей, пропорциональной ее доле в генеральной совокупности. Если выборка формируется с равной долей отбора, по существу, она равносильна ряду собственно-случайных выборок из меньших генеральных совокупностей, каждая из которых и есть типическая группа.
Отбор из каждой группы осуществляется в случайном (повторном или бесповторном) либо механическом порядке. При типической выборке, (как с равной, так и неравной долей отбора), удается устранить влияние межгрупповой вариации изучаемого признака на точность ее результатов, так как обеспечивается обязательное представительство в выборочной совокупности каждой из типических групп.
Поскольку средняя из групповых дисперсий всегда меньше общей дисперсии, постольку при прочих равных условиях стандартная ошибка типической выборки будет меньше стандартной ошибки собственно-случайной выборки.
При определении стандартных ошибок типической выборки применяются следующие формулы:
- при повторном способе отбора:
при бесповторном способе отбора:
где σв 2 – средняя из групповых дисперсий в выборочной совокупности.
Серийная (гнездовая) выборка – это такой вид формирования выборочной совокупности, когда в случайном порядке отбираются не единицы, подлежащие обследованию, а группы единиц (серии, гнезда). Внутри отобранных серий (гнезд) обследованию подвергаются все единицы. Серийную выборку практически организовать и провести легче, чем отбор отдельных единиц.
Однако при этом виде выборки, во-первых, не обеспечивается представительство каждой из серий, и, во-вторых, не устраняется влияние межсерийной вариации изучаемого признака на результаты обследования. В том случае, когда эта вариация значительна, она приведет к увеличению случайной ошибки репрезентативности. При выборе вида выборки исследователю необходимо учитывать это обстоятельство.
Стандартная ошибка серийной выборки определяется по формулам:
- при повторном способе отбора:
где σв 2 – межсерийная дисперсия выборочной совокупности;
Г – число отобранных серий;
- при бесповторном способе отбора:
где R – число серий в генеральной совокупности.
В практике те или иные способы и виды выборок применяются в зависимости от цели и задач выборочных обследований, а также возможностей их организации и проведения. Чаще всего применяется комбинирование способов отбора и видов выборки. Такие выборки получили название комбинированных. Комбинирование возможно в разных сочетаниях: механической и серийной выборки, типической и механической, серийной и собственно-случайной и т. д. К комбинированной выборке прибегают с целью обеспечить наибольшую репрезентативность с наименьшими трудовыми и денежными затратами на организацию и проведение обследования.
При комбинированной выборке величина стандартной ошибки выборки состоит из ошибок на каждой ее ступени и может быть определена как корень квадратный из суммы квадратов ошибок соответствующих выборок. Так, если при комбинированной выборке в сочетании использовались механическая и типическая выборки, то стандартную ошибку можно определить по формуле:
где μ1 и μ2– стандартные ошибки соответственно механической и типической выборок.
На первой ступени с помощью заранее определенного способа и вида отбора отбираются единицы первой ступени. На второй ступени из каждой единицы первой ступени, попавшей в выборку, отбираются единицы второй ступени и т. д. Число ступеней может быть и больше двух. На последней ступени формируется выборочная совокупность, единицы которой подлежат обследованию. Так, например, для выборочного обследования бюджетов домашних хозяйств на первой ступени отбираются территориальные субъекты страны, на второй – районы в отобранных регионах, на третьей в каждом муниципальном образовании отбираются предприятия или организации и, наконец, на четвертой ступени в отобранных предприятиях отбираются семьи.
Стандартную ошибку выборки при многоступенчатом отборе при группах разных объемов определяют по формуле:
где μ1, μ2, μ3,… – стандартные ошибки на разных ступенях;
N1, n2, n3,… – численность выборок на соответствующих ступенях отбора.
В том случае, если группы неодинаковы по объему, теоретически этой формулой пользоваться нельзя. Но если общая доля отбора на всех ступенях постоянна, то практически расчет по этой формуле не приведет к искажению величины ошибки.
Сущность многофазной выборки состоит в том, что на основе первоначально сформированной выборочной совокупности образуют подвыборку, из этой подвыборки – следующую подвы-борку и т. д. Первоначальная выборочная совокупность представляет собой первую фазу, подвыборка из нее – вторую и т. д.
Многофазную выборку целесообразно применять в нескольких случаях:
- если для изучения различных признаков требуется неодинаковый объем выборки;
- если колеблемость изучаемых признаков неодинакова и требуемая точность различна;
- если в отношении всех единиц первоначальной выборочной совокупности (первая фаза) необходимо собрать одни – менее подробные сведения, а в отношении единиц каждой последующей фазы другие – более подробные.
Одним из несомненных достоинств многофазной выборки является то обстоятельство, что сведениями, полученными на первой фазе, можно пользоваться как дополнительной информацией на последующих фазах, информацией второй фазы – как дополнительной информацией на следующих фазах и т. д. Такое использование сведений повышает точность результатов выборочного обследования.
Стандартная ошибка при многофазной выборке рассчитывается на каждой фазе в отдельности в соответствии с формулами того способа отбора и вида выборки, при помощи которых формировалась ее выборочная совокупность.
Взаимопроникающие выборки – это две или более независимые выборки из одной и той же генеральной совокупности, образованные одним и тем же способом и видом. К взаимопроникающим выборкам целесообразно прибегать, если необходимо за короткий срок получить предварительные итоги выборочных обследований. Взаимопроникающие выборки эффективны для оценки результатов обследования.
Стандартная ошибка при взаимопроникающих выборках определяется так же, как при типической пропорциональной выборке. Взаимопроникающие выборки по сравнению с другими видами требуют больших трудовых затрат и денежных расходов, поэтому исследователь должен учитывать это обстоятельство при проектировании выборочного обследования.
Предельные ошибки при различных способах отбора и видах выборки определяются по формуле:
Источник