Какие источники света называются когерентными каковы способы их получения

Какие источники света называются когерентными каковы способы их получения

3.2. Методы получения когерентных волн

Для получения когерентных световых волн с помощью обычных (нелазерных) источников применяют метод разделения света от одного источника на две или нескольких систем волн (световых пучков). В каждой из них представлено излучение одних и тех же атомов источника, так что эти волны когерентны между собой и интерферируют при наложении.

Разделение света на когерентные пучки можно осуществить с помощью экранов и щелей, зеркал и преломляющих тел. Рассмотрим некоторые из этих методов.

Источником света служит ярко освещенная щель S, от которой световая волна падает на две узкие щели S 1 и S 2 , параллельные щели S.

Таким образом, щели S 1 и S 2 играют роль когерентных источников. На экране Э (область ВС) наблюдается интерференционная картина в виде чередующихся светлых и темных полос.

Она состоит из двух одинаковых сложенных основаниями призм. Свет от источника S преломляется в обеих призмах, в результате чего за призмой распространяются лучи, как бы исходящие от мнимых источников S 1 и S 2 , являющихся когерентными. Таким образом, на экране Э (область ВС) наблюдается интерференционная картина.

3.3. Оптическая длина пути и разность хода

Пусть две когерентные волны (см. 3.1) создаются одним источником S, но до экрана проходят разные геометрические длины путей l 1 и l 2 в средах с абсолютными показателями преломления n 1 и n 2 соответственно (рис.4).

Тогда фазы этих волн [см. (1) и (2.9)]

w t — j 1 = w t — k 1 l 1 + j 0 , w t — j 2 = w t — k 2 l 1 + j 0

j 2 — j 1 = k 2 l 2 — k 1 l 1 = (12)

где l 1 = l /n 1 , l 2 = l /n 2 -длины волн в средах, показатели преломления которых n 1 и n 2 соответственно, l — длина волны в вакууме.

Произведение геометрической длины пути l световой волны на абсолютный показатель преломления n называется оптической длиной пути волны.

Величину (13)

называют оптической разностью хода интерферирующих волн. С учетом этого разность фаз

j 2 — j 1 = (14)

Источник

ВОЛНОВАЯ ОПТИКА

18.2. Способы получения когерентных источников

Когерентные источники получают, разделив световую волну, идущую от одного источника на две.

18.2.1. Опыт Юнга

Томас Юнг наблюдал интерференцию от двух источников, прокалывая на малом расстоянии (d ≈ 1мм) два маленьких отверстия в непрозрачном экране. Отверстия освещались светом от солнца, прошедшим через малое отверстие в другом непрозрачном экране.

Интерференционная картина наблюдалась на экране, удаленном на расстоянии L ≈ 1м от двух источников. Так, впервые в истории, Т. Юнг определил длины световых волн.

При использовании лазера в качестве источника света необходимость в экране отпадает.

18.2.2. Зеркала Френеля

Свет от узкой щели S падает на два плоских зеркала, развернутых друг относительно друга на очень малый угол φ . Используя закон отражения света (17.1.3.) нетрудно показать, что падающий пучок света разобьется на два, исходящих из мнимых источников S1 и S2 . Источник S закрывают от экрана наблюдения непрозрачным экраном.

18.2.3. Бипризма Френеля

Две стеклянные призмы с малым преломляющим углом θ изготавливают из одного куска стекла так, что призмы сложены своими основаниями, Источник света — ярко освещенная щель S . После преломления в бипризме падающий пучок расщепляется на два, исходящих от мнимых источников S1 и S2 , которые дают две когерентные цилиндрические волны.

Так как преломляющий угол θ мал, то все лучи отклоняются каждой из половинок бипризмы на один и тот же угол φ . Можно показать, что в этом случае

,

здесь n — показатель преломления материала призмы.

Расстояние между источниками:

.

18.2.4. Интерференция при отражении от прозрачных пластинок

Луч света, падающий на прозрачную пластинку, частично отражается и частично преломляется. Преломленный луч, отражаясь от нижней поверхности пластинки, идет к верхней и преломляется на ней второй раз. Таким образом получаются два луча.

Если источник света естественный, то необходимым условием когерентности является малая толщина пластинок (интерференция в тонких пленках). При освещении лазерным лучом это ограничение отпадает.

При определении оптической разности хода необходимо учитывать изменение фазы отраженной волны на противоположную, если отражение происходит от оптически более плотной среды.

.

.

Здесь λ0/2 появилась за счет изменения фазы волны на противоположную при отражении в точке A . Связь разности фаз δ и разности хода Δ , см. (18.1.2.2.).

18.2.4.1. Кольца Ньютона

Плосковыпуклая линза большого радиуса кладется на стеклянную пластинку и освещается сверху параллельным пучком света. Так как радиус линзы R велик по сравнению с r — радиусом интерференционных полос, то угол падения света на внутреннюю поверхность линзы i ≈ 0 . Тогда геометрическая разность хода с большой точностью равна 2b . При нахождении оптической разности хода следует учитывать изменение фазы на противоположную при отражении от оптически более плотной среды. Связь между b, r и R нетрудно найти из геометрических соображений.

Если в зазоре между линзой и пластиной n = 1 , то для радиуса интерференционных полос (колец Ньютона) получается формула:

При четном m кольца Ньютона темные, в частности при m = 0, r = 0 и в центре наблюдается темное пятно (из-за потери λ0/2 при отражении от стеклянной пластинки).

Если m нечетное, то кольца светлые.

18.3. Многолучевая интерференция

Пусть в заданную точку экрана посылают световые волны N источников одинаковой интенсивности ( N > 2 ).

Предположим, что колебание, возбуждаемое каждым последующим источником сдвинуто по фазе относительно предыдущего на δ . Результирующую амплитуду A можно выразить через A0 — амплитуду от одного источника, используя метод векторной диаграммы (14.3.1, 14.3.2).

Выразим A и A0 через вспомогательный параметр R — радиус окружности, на которой лежат начала и концы наших векторов:

После исключения R получим амплитуду результирующего колебания:

.

Если δ = 0 (все колебания имеют одинаковую фазу) полученное выражение становится неопределенным. Взяв производную по δ от числителя и знаменателя, найдем по правилу Лопиталя, что при δ = 0 амплитуда результирующего колебания:

.

Этот результат непосредственно очевиден из векторной диаграммы, построенной для случая δ = 0 , т.к. все векторы будут направлены вдоль одной прямой. Интенсивность света (16.5.4) I

.

.

Источник

Способы получения когерентных источников света

Когерентные источники света – это источники, которые имеют постоянную во времени разность фаз, согласованное протекание нескольких колебательных или волновых процессов, степень которых различна.

Имеется много способов получения когерентных источников света, но суть их одинакова. С помощью разделения пучка на две части получают два мнимых источника света, дающих когерентные волны.

Интерференция света – сложение двух или нескольких световых волн с одинаковыми периодами, сходящихся в одной точке, в результате которого наблюдается увеличение или уменьшение амплитуда результирующей волны. Для получения устойчивой интерференционной картины необходимо, чтобы складываемые волны были когерентны. Когерентными называют волны с одинаковой частотой (периодом) и постоянной во времени разностью фаз. Чтобы получить когерентные волны необходимо световую волну от одного источника разделить на две или несколько волн. После прохождения различных путей эти волны, имея некоторую разность хода, интерферируют.

Приёмы разделения волны:

· С помощью бипризмы Френеля:

Волна, идущая от источника света, раздваивается из-за преломления света в двух половинах бипризмы. Получаемы волны 1 и 2 как бы исходят от двух мнимых источников S1 и S2 и являются когерентными, поэтому в заштрихованной области наблюдается интерференция.

Свет, проходящий через узкое отверстие S, падает на экран с двумя отверстиями S1 и S2 и делится на две когерентных волны, поэтому в заштрихованной области наблюдается интерференция, а на экране – интерференционная картина.

2. Вывод выражения для расстояния l между мнимыми изображения источника в случае бипризмы.

Бипризма Френеля представляет собой изготовленные из одного куска стекла две симметричные призмы, имеющие общее основание и малый преломляющий угол G≈1°. На расстоянии L1 от бипризмы располагается источник света S. Можно показать, что в этом случае, если преломляющий угол призмы мал и лучи падают на призму под небольшими углами, все лучи отклоняются призмой почти на одинаковый угол ϕ, равный

где n – показатель преломления стекла, из которого изготовлена призма, α – преломляющий угол каждой половинки бипризмы. При этом мнимые изображения S1 и S2 точечного источника света S лежат с ним в одной плоскости. В результате образуются две когерентные волны, исходящие из мнимых источников S1 и S2. Расстояние d между мнимыми источниками равно:

где L1 – расстояние между источником S и бипризмой. При этом, sin ϕ≈ϕ (так как угол ϕ достаточно мал), тогда:

Источник

Какие источники света называются когерентными каковы способы их получения

Источники, излучающие волны одинаковой частоты с постоянной разностью фаз, называются когерентными. Волны, излучаемые такими источниками, также являются когерентными. В результате наложения когерентных волн наблюдается явление интерференции. Оно заключается в том, что в одних местах происходит усиление интенсивности, в других — ослабление.

Для экспериментального обнаружения явления интерференции
при сложении двух световых волн необходимо, чтобы они были частями фронта волны, первоначально испущенной одним источником в таком случае разность фаз между ними будет постоянна во времени.

Одним из способов получения такого рода когерентных источников является метод бипризмы Френеля. Бипризма представляет собой две призмы с малыми преломляющими углами, сложенными своими основаниями. Падающий от щели монохроматический пучок (рис.2.1) света разлагается вследствие преломления в бипризме на два пересекающихся пучка, которые исходят как бы от двух изображений щели и , являющихся когерентными источниками. Там, где пучки накладываются, образуется зона интерференции, в которой наблюдается интерференционная картина (ряд темных и светлых полос).

Возникновение темных и светлых полос зависит от разности хода интерферирующих лучей. Пусть две монохроматические волны, исходящие от когерентных источников и (рис.2.2), придут в какую-нибудь точку с разностью хода

где расстояние ;
расстояние .

Если разность хода равна четному чиcлу полуволн, т.е.:

то получим усиление света в точке — max.

Если разность хода равна нечетному числу полуволн, т.е.:

то получим ослабление света — min.

Используя соотношение (2) или (3), и зная расстояние между источниками, получим соотношение между длиной световой волны и расстоянием между интерференционными полосами на экране .

Обозначим через расстояние между когерентными источниками и , а через — раccтояние от прямой, cоединяющей источники и , до экрана, на котором наблюдаются интерференционные полосы (заметим, что ). В точке экрана, лежащей на перпендикуляре к cередине прямой, соединяющей источники, наблюдается максимум, который называется центральным. Отложим на прямой отрезок , равный , тогда . Из подобия треугольников и (рис.2.2) следует

Для максимумов интерференции из формул (2) и (4) имеем:

Для двух соседних максимумов и выражения (5) будет соответственно иметь вид:

Обозначим — ширину полосы интерференции и, вычитая из (7) — (6), получим искомое выражение:

Следовательно, для нахождения длины световой волны надо определить ширину интерференционной полосы и расстояние между источниками.

Ширину интерференционной полосы можно измерить непосредственно на экране с помощью достаточно точной масштабной линейки.

Расстояние между источниками и измеряют следующим образом. Сначала получают их изображение на экране с помощью специальной линзы (рис.2.3). Расстояние между изображениями источников на экране измеряют с помощью той же линейки, а затем вычисляют — действительное расстояние между источниками, используя соотношение

где расстояние от щели до линзы ,
расстояние от щели линзы до экрана.

Следует отметить, что мнимые изображения щели и и сама щель не лежат строго в одной плоскости (рис.2.1 и 2.3), поэтому соотношения (9) не является строгим. Однако оно выполняется с достаточной для практики точностью, т.к. .

Преобразуя (8) с учетом (9), получим окончательную расчетную формулу для определения длины световой волны

Источник

Читайте также:  Способ приготовления шампиньонов с овощами
Оцените статью
Разные способы