Типы и виды задач в начальной школе.
статья по математике на тему
Решение задач — это важнейшее средство формирования математических знаний, умений, навыков учащихся, но в то же время- это одна из основных форм изучения математики, а также средство математического развития ребенка.
Скачать:
Вложение | Размер |
---|---|
Решение задач — это важнейшее средство формирования математических знаний, умений, навыков учащихся, но в то же время- это одна | 120.07 КБ |
Решение задач — это важнейшее средство формирования математических знаний, умений, навыков учащихся, но в то же время- это одна | 2.34 МБ |
Предварительный просмотр:
Учитель начальных классов
МАОУ « Средняя школа № 8» г. Когалым
Сапогина Светлана Юрьевна
Типы и виды задач в начальной школе.
Решение задач — это важнейшее средство формирования математических знаний, умений, навыков учащихся, но в то же время- это одна из основных форм изучения математики, а также средство математического развития ребенка.
В начальных классах ведется работа над группами задач, решение которых основывается на одних и тех же связях между данными и искомым, а отличаются они конкретным содержанием и числовыми данными. Группы таких задач называются задачами одного вида.
С методической точки зрения для полноценной работы над задачей ученик должен:
— уметь хорошо читать и понимать смысл прочитанного;
— уметь анализировать текст задачи, выявлять его структуру и взаимоотношения между данными и искомыми;
— уметь правильно выбирать и выполнять арифметические действия;
— уметь записывать решение задач с помощью соответствующей математической символики;
— умение составлять задачи.
В начальном курсе математике понятие «задача» обычно используется тогда, когда речь идет об арифметических задачах. Они формируются в виде текста, в котором находят отражение количественные отношения между реальными объектами. Поэтому их называют «текстовыми», « сюжетными», «вычислительными» или «практическими».
Начальный курс математики ставит основной целью научить младших школьников решать задачи арифметическим методом, который сводится к выбору арифметического действия или действий, моделирующих связи между данными и искомыми величинами. Оно оформляется в виде последовательности числовых равенств или выражением, к которым даются пояснения.
Задача, для решения которой надо выполнить несколько действий, связанных между собой, называется составной задачей. Она включает в себя ряд простых задач. Связанных между собой, так что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению ее на ряд простых задач и к последовательному их решению. В подготовительный период перед знакомством с составной задачей одной из форм работы является решение простых задач. Простые задачи являются составными частями одного из
способов введения составных задач. Решение составной задачи всегда начинается знакомством с условием и вопросом к ней. Далее используются специальные приемы, которые помогают детям вычленить величины, данные и искомые числа, установить связи между ними. К таким приемам относятся и иллюстрация задачи.
Наряду с предметной иллюстрации, начиная с 1 класса, используется и схематическая – это краткая запись условия задачи.
В краткой записи фиксируются в удобнообразной форме величины, числа – данные и искомые, а также некоторые слова, показывающие, о чем говорится в задаче: «было», «положили», «стало» и т. п. и слова, означающие отношения: «больше», «меньше», «одинаково» и т. п.
Краткую запись задачи можно выполнять в виде опорной схемы, таблицы, чертежа, с помощью геометрических фигур.
Для того чтобы краткая запись в максимальной степени способствовала решению задачи, нужно:
1).Краткую запись составлять на основе анализа текста задачи;
2). В краткой записи должно быть минимальное количество условных обозначений;
3). Количество вопросительных знаков в краткой записи должно соответствовать
количеству действий в задачи;
4). Форму краткой записи выбирать такую, чтобы она более наглядно представляла условие задачи.
В формировании умения решать текстовые задачи велика роль правильно организованного разбора задачи. В методике обычно говорят о двух способах проведения такой работы: о разборе от данных к искомым значениям и, наоборот. От искомых (вопроса задачи) к данным (известным) значениям. Первый называется синтетическим, второй – аналитическим. Возможна их комбинация – аналитико-синтетический способ рассуждений.
Составление задач по краткой записи – важный этап в работе над составной задачей и отработке навыков решения ее. Эту работу надо начинать еще при работе над простой задачей и параллельно с записью краткого условия задачи. Сначала рекомендуется научить составлять краткое условие составной задачи, решать ее, затем предложить аналогичную краткую запись, но с другими числами и попросить сформулировать задачу, аналогичную данной. Затем постепенно, работая над составлением задач, менять формы краткой записи условия задачи и исключать предварительную работу с заданной задачей и ее краткой записью
Пояснения к решению задач. Эта форма работы над составной задачей предусматривает проверку умения учащихся по данным действиям решения задачи пояснить, на какой вопрос и с какой целью отвечает действие. Такая форма работы помогает учащимся увидеть другие отношения, вести необходимую цепочку логических рассуждений, анализировать и делать выводы. Работа по осознанию хода решения той или иной математической задачи дает импульс к развитию мышления ученика.
При изучении задач в курсе математики, как простых, так и сложных, как обычных арифметических, так и типовых оказывается высокоэффективным систематическое применение так называемого метода обратных задач. Успех обучения решению задач посредством преобразования прямой задачи в обратные задачи объясняется как первопричиной тем, что такой путь заставляет поднимать из сферы подсознания наибольшее разнообразие связей, заключенных в содержании задачи. Это и обеспечивает – на языке дидактики – глубокое и прочное усвоение материала. На составление и решение обратной задачи уходит несравненно меньше времени, чем на решение новой задачи, так как числовые данные и сюжет остаются прежними; производится здесь лишь логическая операция по переосмыслению ролей чисел; неизвестное в прямой задаче становится известным и наоборот.
Типичные краткие записи представляю вам ни листах. В первом классе это могут быть рисунки, геометрические фигуры, но с умением писать вводятся краткие записи.
Так же представляю вам типы задач в начальной школе, каждому типу своя краткая запись.
Источник
виды текстовых задач и методы их решения
Математика проникает почти во все области деятельности человека, что положительно сказалось на темпе роста научно-технического прогресса. В связи с этим было решено включить в итоговую аттестацию в форме единого государственного экзамена (ЕГЭ) предмет математики, где особое внимание уделяется текстовым задачам.
Изучение текстовых задач происходит в основной школе, но рассматриваются они недостаточно глубоко, таким образом, приобретённые в основной школе навыки и знания решения текстовых задач со временем теряются. Исходя из этого, чтобы достойно сдать ЕГЭ, а именно, верно решить текстовые задачи, нам необходимо рассмотреть классификации этих задач, систематизировать и ликвидировать пробелы в знаниях по математике.
При решении каждой задачи мы производим небольшое математическое исследование, с помощью которого проверяется наша сообразительность и способность к логическому мышлению.
Текстовые задачи мы можем условно классифицировать по типам: задачи на числовые зависимости; задачи, связанные с понятием процента; задачи на «движение», «концентрацию смесей и сплавов», «работу» и т. д. По методу решения: алгебраический метод и геометрический метод. Решение текстовых задач делится на несколько этапов:
- выбор неизвестных;
- составление уравнений или систем уравнений, а в некоторых случаях — систем неравенств;
- нахождение неизвестных или нужной комбинации неизвестных;
- отбор решений, подходящих по смыслу задачи.
Иногда при решении сложных задач трудно с самого начала определить количество вводимых неизвестных. Выбирая неизвестные, мы создаём математическую модель ситуации, описанной в условии задачи. Поэтому все соотношения должны из конкретных условий задачи, т. е. необходимо каждое условие представить в виде уравнения или неравенства. Так же необходимо обратить внимание на то, что число переменных, входящих в неравенства или уравнения, может оказаться достаточно большим, однако в дальнейшем, при решении уравнений или неравенств, «лишние» переменные последовательно исключаются.
Бывают случаи, когда число уравнений совпадает с числом неизвестных, но и нередки задачи, в которых число неизвестных больше числа уравнений. Если при этом мы использовали все условия задачи, то необходимо прочитать внимательно ещё раз условие и понять требование задачи, т. к. может оказаться, что надо отыскать не все неизвестные, а всего лишь их соотношение.
Планируемым результатом работы является определение основных тенденций в подготовке к аттестации по математике в форме ЕГЭ и овладение всеми методами решения текстовых задач, необходимыми для успешного выполнения заданий ЕГЭ.
Скачать:
Вложение | Размер |
---|---|
виды текстовых задач и методы их решения | 65.07 КБ |
Предварительный просмотр:
Математика проникает почти во все области деятельности человека, что положительно сказалось на темпе роста научно-технического прогресса. В связи с этим было решено включить в итоговую аттестацию в форме единого государственного экзамена (ЕГЭ) предмет математики, где особое внимание уделяется текстовым задачам.
Изучение текстовых задач происходит в основной школе, но рассматриваются они недостаточно глубоко, таким образом, приобретённые в основной школе навыки и знания решения текстовых задач со временем теряются. Исходя из этого, чтобы достойно сдать ЕГЭ, а именно, верно решить текстовые задачи, нам необходимо рассмотреть классификации этих задач, систематизировать и ликвидировать пробелы в знаниях по математике.
При решении каждой задачи мы производим небольшое математическое исследование, с помощью которого проверяется наша сообразительность и способность к логическому мышлению.
Текстовые задачи мы можем условно классифицировать по типам: задачи на числовые зависимости; задачи, связанные с понятием процента; задачи на «движение», «концентрацию смесей и сплавов», «работу» и т. д. По методу решения: алгебраический метод и геометрический метод. Решение текстовых задач делится на несколько этапов:
- выбор неизвестных;
- составление уравнений или систем уравнений, а в некоторых случаях — систем неравенств;
- нахождение неизвестных или нужной комбинации неизвестных;
- отбор решений, подходящих по смыслу задачи.
Иногда при решении сложных задач трудно с самого начала определить количество вводимых неизвестных. Выбирая неизвестные, мы создаём математическую модель ситуации, описанной в условии задачи. Поэтому все соотношения должны из конкретных условий задачи, т. е. необходимо каждое условие представить в виде уравнения или неравенства. Так же необходимо обратить внимание на то, что число переменных, входящих в неравенства или уравнения, может оказаться достаточно большим, однако в дальнейшем, при решении уравнений или неравенств, «лишние» переменные последовательно исключаются.
Бывают случаи, когда число уравнений совпадает с числом неизвестных, но и нередки задачи, в которых число неизвестных больше числа уравнений. Если при этом мы использовали все условия задачи, то необходимо прочитать внимательно ещё раз условие и понять требование задачи, т. к. может оказаться, что надо отыскать не все неизвестные, а всего лишь их соотношение.
Существуют различные методы решения текстовых задач: арифметический, алгебраический, геометрический, логический, практический и др. В основе каждого метода лежат различные виды математических моделей.
Дадим краткую характеристику первых трех методов решения текстовых задач, которые наиболее часто встречаются в школьном курсе математики.
- Арифметический метод. Решить задачу арифметическим методом – значит найти ответ на требование задачи посредством выполнения арифметических действий над числами. Одну и ту же задачу во многих случаях можно решить различными арифметическими способами. Задача считается решенной различными способами, если её решения отличаются связями между данными и искомыми, положенными в основу решений, или последовательностью использования этих связей.
- Алгебраический метод. В науке данный метод трактуется как метод буквенных вычислений. Решить задачу алгебраическим методом – это значит найти ответ на требование задачи, составив и решив уравнение или систему уравнений (или неравенств). Одну и ту же задачу можно также решить различными алгебраическими способами. Задача считается решенной различными способами, если для её решения составлены различные уравнения или системы уравнений (неравенств), в основе составления которых лежат различные соотношения между данными и искомыми.
- Геометрический метод. Он состоит в том, что логическое доказательство или решение задачи направляется наглядным представлением, иногда доказательство или решение видно из наглядной картины. Под геометрическим методом решения алгебраических задач будем понимать в дальнейшем метод решения, заключающийся в использовании геометрических представлений (изображений), законов геометрии и элементов аналитических методов (уравнений (неравенств), систем уравнений, арифметических выражений и др.)[12].
Геометрические представления возникают на основе геометрических знаний и геометрической интуиции. Геометрическое представление условия текстовой задачи будем называть геометрической моделью этой задачи. Построение и использование геометрических моделей в процессе решения текстовых алгебраических задач основаны на законах геометрии. Отсюда и название «геометрический метод».
Традиционно под геометрическим методом решения задач (не только текстовых) в курсе алгебры понимали только конструктивный прием, когда решение выполнялось с помощью точных построений, и ответ задачи получали прямо с чертежа. Это ограничивало возможности использования геометрических представлений, в частности, при решении текстовых задач. Мы будем понимать геометрический метод, как метод, состоящий из двух приемов: конструктивного и конструктивно-аналитического[12].
Конструктивный прием предполагает выполнение всех построений чертежными инструментами на миллиметровой бумаге в клетку с использованием масштаба. Ответ задачи получается обычно приближенный, но приемлемый для практических целей, и находится он путем измерений длин отрезков или других элементов чертежа.
Конструктивно-аналитический прием позволяет выполнить чертеж схематически, от руки. Решение задачи в этом случае осуществляется аналитически: либо арифметическим путем с использование чертежа, либо путем составления уравнения, которое основывается на точных геометрических соотношениях (равенства, подобия, равновеликости и др.).
Таким образом, для решения алгебраической задачи геометрическим методом необходимо:
- построить геометрическую модель задачи: решающую или вспомогательную (геометрическая модель задачи называется решающей, если она позволяет получить ответ задачи без аналитических выкладок, в противном случае – вспомогательной).
- найти ответ задачи: если модель решающая, то ответ «снимаем» с чертежа, в случае вспомогательной геометрической модели надо:
а) составить числовое выражение или уравнение (систему уравнений), неравенство (систему неравенств), используя геометрические соотношения полученных фигур;
б) найти значение числового выражения или уравнения, неравенства (системы уравнений или неравенств);
в) исследовать полученные решения: выяснить, удовлетворяют ли корни уравнения (системы уравнений), решения неравенства (системы неравенств) условию и требованию задачи, исчерпывают ли они все решения задачи и т.д.
4 Задачи на движение
Системы уравнений, которые составляются на основании условий задач на движение, как правило, содержат такие величины, как скорости движущихся объектов, расстояние, время, ускорение, а также скорость течения воды (движение по реке).
Решая подобные задачи для различных типов движения нам необходимо определить некоторые особенности[13].
Для равномерного движения по прямой будут характерны следующие особенности:
- Движение на отдельных участках считается равномерным, а пройденный путь определяется по формуле , где — скорость, — время.
- Повороты движущихся тел считаются мгновенными, т. е. происходят без затрат времени. При этом скорость (если задана в условии) также меняется мгновенно.
- Скорость считается всегда величиной положительной.
- При движении объекта по течению реки, скорость течения которой равна , а собственная скорость объекта в стоячей воде равна , скорость объекта относительно берега будет равна . При движении объекта против течения реки, его скорость относительно берега будет равна , при этом должно выполняться неравенство .
- Когда в условии задачи говорится о движении плотов, то можно считать, что плот имеет ту же скорость, что и течение реки.
Исследовав типы задач для различных типов движения из Открытого банка задач ЕГЭ по математике, мы можем разделить их на две группы – задачи на движение в одном направлении, задачи на встречное движение и движение туда и обратно, и составить для каждой группы одну общую модель решения данных задач.
- Задачи на движение в одном направлении
В задачах на движение в одном направлении за неизвестную величину чаще всего, за неизвестную наиболее рационально принимать наименьшую из величин или то, что необходимо найти. При этом не стоит забывать о том, что нам необходимо указать дополнительное условие, т. е. например, если это скорость, то она не может быть отрицательной или равной нулю. При решении задач с большим количеством информации целесообразно использовать таблицы:
Источник