Как записать равенства тремя способами

Понятие равенства, знак равенства, связанные определения

Материал статьи позволит ознакомиться с математической трактовкой понятия равенства. Порассуждаем на тему сути равенства; рассмотрим его виды и способы его записи; запишем свойства равенства и проиллюстрируем теорию примерами.

Что такое равенство

Само понятие равенства тесно переплетено с понятием сравнения, когда мы сопоставляем свойства и признаки, чтобы выявить схожие черты. Процесс сравнения требует наличия двух объектов, которые и сравниваются между собой. Данные рассуждения наводят на мысль, что понятие равенства не может иметь место, когда нет хотя бы двух объектов, чтобы было что сравнивать. При этом, конечно, может быть взято большее количество объектов: три и более, однако, в конечном, счете, мы так или иначе придем к сравнению пар, собранных из заданных объектов.

Смысл понятия «равенство» в обобщенном толковании отлично определяется словом «одинаковые». О двух одинаковых объектах можно говорить – «равные». Например, квадраты и . А вот объекты, которые хоть по какому-то признаку отличаются друг от другу, назовем неравными.

Говоря о равенстве, мы можем иметь в виду как объекты в целом, так и их отдельные свойства или признаки. Объекты являются равными в целом, когда одинаковы по всем характеристикам. Например, когда мы привели в пример равенство квадратов, имели в виду их равенство по всем присущим им свойствам: форме, размеру, цвету. Также объекты могут и не быть равными в целом, но обладать одинаковыми отдельными признаками. Например: и . Указанные объекты равны по форме (оба – круги), но различны (неравны) по цвету и размеру.

Таким образом, необходимо заранее понимать, равенство какого рода мы имеем в виду.

Запись равенств, знак равно

Чтобы произвести запись равенства, используют знак равно (или знак равенства), обозначаемый как = .Такое обозначение является общепринятым.

Составляя равенство, равные объекты размещают рядом, записывая между ними знак равно. К примеру, равенство чисел 5 и 5 запишем как 5 = 5 . Или, допустим, нам необходимо записать равенство периметра треугольника А В С 6 метрам: P А В С = 6 м.

Равенство – запись, в которой использован знак равно, разделяющий два математических объекта (или числа, или выражения и т.п.).

Когда возникает необходимость письменно обозначить неравенство объектов, используют знак не равно, обозначаемый как ≠ , т.е. по сути зачеркнутый знак равно.

Верные и неверные равенства

Составленные равенства могут соответствовать сути понятия равенства, а могут и противоречить ему. По этому признаку все равенства классифицируют на верные равенства и неверные равенства. Приведем примеры.

Составим равенство 7 = 7 . Числа 7 и 7 , конечно, являются равными, а потому 7 = 7 – верное равенство. Равенство 7 = 2 , в свою очередь, является неверным, поскольку числа 7 и 2 не равны.

Свойства равенств

Запишем три основных свойства равенств:

  • свойство рефлексивности, гласящее, что объект равен самому себе;
  • свойство симметричности: если первый объект равен второму, то второй равен первому;
  • свойство транзитивности: когда первый объект равен второму, а второй – третьему, тогда первый равен третьему.

Буквенно сформулированные свойства запишем так:

Отметим особенную пользу второго и третьего свойств равенств – свойств симметричности и транзитивности – они дают возможность утверждать равенство трех и более объектов через их попарное равенство.

Двойные, тройные и т.д. равенства

Совместно со стандартной записью равенства, пример которой мы приводили выше, также часто составляются так называемые двойные равенства, тройные равенства и т.д. Подобные записи представляют собой как бы цепочку равенств. К примеру, запись 2 + 2 + 2 = 4 + 2 = 6 — двойное равенство, а | A B | = | B C | = | C D | = | D E | = | E F | — пример четвертного равенства.

При помощи таких цепочек равенств оптимально составлять равенство трех и более объектов. Такие записи по своему смыслу являются обозначением равенства любых двух объектов, составляющих исходную цепочку равенств.

Например, записанное выше двойное равенство 2 + 2 + 2 = 4 + 2 = 6 обозначает равенства: 2 + 2 + 2 = 4 + 2 , и 4 + 2 = 6 , и 2 + 2 + 2 = 6 , а в силу свойства симметричности равенств и 4 + 2 = 2 + 2 + 2 , и 6 = 4 + 2 , и 6 = 2 + 2 + 2 .

Составляя подобные цепочки, удобно записывать последовательность решения примеров и задач: такое решение становится наглядным и отражает все промежуточные этапы вычислений.

Источник

Числовые равенства, свойства числовых равенств

После получения общих сведений о равенствах в математике переходим к более узким темам. Материал этой статьи даст представление о свойствах числовых равенств.

Что такое числовое равенство

Первый раз мы сталкиваемся с числовыми равенствами еще в начальной школе, когда происходит знакомство с числами и понятием «столько же». Т.е. самые примитивные числовые равенства это: 2 = 2 , 5 = 5 и т.д. И на том уровне изучения мы называли их просто равенствами, без уточнения «числовые», и закладывали в них количественный или порядковый смысл (который несут натуральные числа). Например, равенство 2 = 2 будет соответствовать изображению, на котором – два цветка и на каждом сидит по две шмеля. Или, к примеру, две очереди, где вторыми по порядку стоят Вася и Ваня.

По мере появления знаний об арифметических действиях числовые равенства становятся сложнее: 5 + 7 = 12 ; 6 — 1 = 5 ; 2 · 1 = 2 ; 21 : 7 = 3 и т.п. Затем начинают встречаться равенства, в записи которых участвуют числовые выражения разного рода. Например, ( 2 + 2 ) + 5 = 2 + ( 5 + 2 ) ; 4 · ( 4 − ( 1 + 2 ) ) + 12 : 4 − 1 = 4 · 1 + 3 − 1 и т.п. Дальше мы знакомимся с прочими видами чисел, и числовые равенства приобретают все более и более интересный и разнообразный вид.

Читайте также:  Решение задач по математике разными способами начальная школа

Числовое равенство – это равенство, обе части которого состоят из чисел и/или числовых выражений.

Свойства числовых равенств

Сложно переоценить значимость свойств числовых равенств в математике: они являются опорой многому, определяют принцип работы с числовыми равенствами, методы решений, правила работы с формулами и многое другое.Очевидно, что существует необходимость детального изучения свойств числовых равенств.

Свойства числовых равенств абсолютно согласованы с тем, как определяются действия с числами, а также с определением равных чисел через разность: число a равно числу b только в тех случаях, когда разность a − b есть нуль. Далее в описании каждого свойства мы проследим эту связь.

Основные свойства числовых равенств

Изучать свойства числовых равенств начнем с трех базовых свойств, которые присущи всем равенствам. Перечислим основные свойства числовых равенств:

  • свойство рефлексивности: a = a ;
  • свойство симметричности: если a = b , то b = a ;
  • свойство транзитивности: если a = b и b = c , то a = c ,где a , b и c – произвольные числа.

Определение 2

Свойство рефлексивности обозначает факт равенства числа самому себе: к примеру, 6 = 6 , − 3 = − 3 , 4 3 7 = 4 3 7 и т.п.

Нетрудно продемонстрировать справедливость равенства a − a = 0 для любого числа a : разность a − a можно записать как сумму a + ( − a ) , а свойство сложения чисел дает нам возможность утверждать, что любому числу a соответствует единственное противоположное число − a , и сумма их есть нуль.

Согласно свойству симметричности числовых равенств: если число a равно числу b ,
то число b равно числу a . К примеру, 4 3 = 64 , тогда 64 = 4 3 .

Обосновать данное свойство можно через разность чисел. Условию a = b соответствует равенство a − b = 0 . Докажем, что b − a = 0 .

Запишем разность b − a в виде − ( a − b ) , опираясь на правило раскрытия скобок, перед которыми стоит знак минус. Новая запись выражения равна — 0 , а число, противоположное нулю, это нуль. Таким образом, b − a = 0 , следовательно: b = a .

Свойство транзитивности числовых равенств гласит, что два числа равны друг другу в случае их одновременного равенства третьему числу. К примеру, если 81 = 9 и 9 = 3 2 , то 81 = 3 2 .

Свойству транзитивности также отвечает определение равных чисел через разность и свойства действий с числами. Равенствам a = b и b = c соответствуют равенства a − b = 0 и b − c = 0 .

Докажем справедливость равенства a − c = 0 , из чего последует равенство чисел a и c . Посколькусложение числа с нулем не меняет само число, то a − c запишем в виде a + 0 − c . Вместо нуля подставим сумму противоположных чисел − b и b , тогда крайнее выражение станет таким: a + ( − b + b ) − c . Выполним группировку слагаемых: ( a − b ) + ( b − c ) . Разности в скобках равны нулю, тогда и сумма ( a − b ) + ( b − c ) есть нуль. Это доказывает, что, когда a − b = 0 и b − c = 0 , верно равенство a − c = 0 , откуда a = c .

Прочие важные свойства числовых равенств

Основные свойства числовых равенств, рассмотренные выше, являются базисом для ряда дополнительных свойств, довольно ценных в разрезе практики. Перечислим их:

Прибавив к (или убавив от) обеим частям числового равенства, являющегося верным, одно и то же число, получим верное числовое равенство. Запишем буквенно: если a = b , где a и b – некоторые числа, то a + c = b + c при любом c .

В качестве обоснования запишем разность ( a + c ) − ( b + c ) .
Это выражение легко преобразуется в вид ( a − b ) + ( c − c ) .
Из a = b по условию следует, что a − b = 0 и c − c = 0 , тогда ( a − b ) + ( c − c ) = 0 + 0 = 0 . Это доказывает, что ( a + c ) − ( b + c ) = 0 , следовательно, a + c = b + c ;

Если обе части верного числового равенства перемножить с любым числом или разделить на число, не равное нулю, тогда получим верное числовое равенство.
Запишем буквенно: когда a = b , то a · c = b · c при любом числе c . Если c ≠ 0 , тогда и a : c = b : c .

Равенство верно: a · c − b · c = ( a − b ) · c = 0 · c = 0 , и из него следует равенство произведений a · c и b · c . А деление на отличное от нуля число c возможно записать как умножение на обратное число 1 c ;

При a и b , отличных от нуля и равных между собой, обратные им числа также равны.
Запишем: когда a ≠ 0 , b ≠ 0 и a = b , то 1 a = 1 b . Крайнее равенство нетрудно доказать: с этой целью разделим обе части равенства a = b на число, равное произведению a · b и не равное нулю.

Укажем еще на пару свойств, которые позволяют осуществлять сложение и умножение соответствующих частей верных числовых равенств:

При почленном сложении верных числовых равенств получается верное равенство. Запись этого свойства такова: если a = b и c = d , то a + c = b + d для любых чисел a , b , c и d .

Обосновать это полезное свойство возможно, опираясь на указанные ранее свойства. Мы знаем, что к обеим частям верного равенства возможно прибавить любое число.
К равенству a = b прибавим число c , а к равенству c = d — число b , итогом станут верные числовые равенства: a + c = b + c и c + b = d + b . Крайнее запишем в виде: b + c = b + d . Из равенств a + c = b + c и b + c = b + d согласно свойству транзитивности следует равенство a + c = b + d . Что и нужно было доказать.

Необходимо уточнить, что почленно можно сложить не только два верных числовых равенства, но и три, и более;

Наконец, опишем такое свойство: почленное перемножение двух верных числовых равенств дает верное равенство. Запишем при помощи букв: если a = b и c = d , то a · c = b · d .

Доказательство этого свойства подобно доказательству предыдущего. Умножим обе части равенства на любое число, умножим a = b на c , а c = d на b , получим верные числовые равенства a · c = b · c и c · b = d · b . Крайнее запишем как b · c = b · d . Свойство транзитивности дает возможность из равенства a · c = b · c и b · c = b · d вывести равенство a · c = b · d , которое нам необходимо было доказать.

Читайте также:  Необычные способы общения людей друг с другом

И вновь уточним, что данное свойство применимо для двух, трех и более числовых равенств.
Так, можно записать: если a = b , то a n = b n для любых чисел a и b , и любого натурального числа n .

Завершим данную статью, собрав для наглядности все рассмотренные свойства:

Если a = b , то b = a .

Если a = b и b = c , то a = c .

Если a = b , то a + c = b + c .

Если a = b , то a · c = b · c .

Если a = b и с ≠ 0 , то a : c = b : c .

Если a = b , a = b , a ≠ 0 и b ≠ 0 , то 1 a = 1 b .

Источник

2.1. Выражения, равенства, неравенства

На бумаге написано следующее:

Как это можно прочитать? До сих пор мы обычно говорили: «Три плюс два равно пять». Но можно сказать и по-другому. Например:

— Три и два — это пять.

— К трем прибавить два будет пять.

— Складываем три и два, в результате получаем пять.

— Три увеличить на два станет пять.

— Сумма чисел три и два равна пяти.

Кстати, «роли», которые играют числа в этой записи, имеют такие названия:

первое слагаемое + второе слагаемое = сумма

Подобным же образом,

это не только «пять минус два равно три», но и:

— Пять без двух — это три.

— От пяти отнять два будет три.

— Из пяти вычесть два получится три.

— Пять уменьшить на два составит три.

— Разность чисел пять и два равна трем.

— Если уменьшаемое равно 5, а вычитаемое равно 2, то разность равна 3.

«Роли» чисел в примерах на вычитание называются так:

уменьшаемое − вычитаемое = разность

В бытовом языке символ «=» допустимо читать как «будет» или «получится». Однако, следует иметь в виду, что на самом деле символ «=» означает «это столько же, сколько». Ведь можно написать не только так:

Семь — это столько же, сколько четыре плюс три.

Рассмотрим такую ситуацию. У Дениса есть 5 конфет. Его младший брат Матвей просит:

— Поделись, пожалуйста, со мной.

Денис раскладывает конфеты на две кучки. Одну кучку оставляет себе, другую дает Матвею. Спрашивается: как 5 конфет можно поделить на две кучки? Возможные ответы:

5 = 1 + 4 (Денис оставляет одну конфету себе, а четыре дает Матвею);
5 = 2 + 3;
5 = 3 + 2;
5 = 4 + 1.

Но это еще не все возможные варианты. Может оказаться так, что Денису эти конфеты вообще не нравятся, и он все их отдает Матвею:

А, может быть, Денис вовсе не захочет делиться конфетами, и тогда следует написать так:

Все эти ответы можно объединить в одну строчку:

5 = 0 + 5 = 1 + 4 = 2 + 3 = 3 + 2 = 4 + 1 = 5 + 0.

Допустим, что какой-нибудь взрослый дядя — непрошеный экзаменатор — спросит у Дениса:

— Считать умеешь? А ну-ка сложи два и три, чему это равно?

Денис теперь смело может ответить:

— Это равно три плюс два.

И Денис будет совершенно прав. Действительно,

Но как же тогда грамотно попросить вычислить «два плюс три», чтобы ответом было одно-единственное число?

Грамотный вопрос звучит так:

— Чему равно значение выражения 2 + 3?

Математическим выражением называется всё, про что можно спросить: «Это сколько? Какому числу это равно?» Мы уже встречались с такими выражениями, как «2 + 3», «5 − 2». Числа сами по себе тоже являются выражениями. Ведь не будет ошибкой утверждать, что

Значит, «2» — это выражение.

Ответ на вопрос: «Это сколько? Какому числу это равно?» — называется значением выражения. Например, значением выражения «2 + 3» является «5». Записывается это уже знакомым нам способом:

Если два выражения имеют одно и то же значение, то между ними ставится знак «=» и полученная запись называется равенством, например:

1 + 4 = 2 + 3;
7 = 2 + 5.

Мы уже знаем, что равенства могут образовывать цепочки:

5 = 0 + 5 = 1 + 4 = 2 + 3 = 3 + 2 = 4 + 1 = 5 + 0.

Если два выражения имеют разные значения, то ставить знак «=» между ними было бы неверно, но можно поставить другой знак, а именно «≠». Например,

1 ≠ 2 (читается: один не равен двум);
3 + 2 ≠ 4 (три плюс два не равно четырем);
10 ≠ 7 − 3 (десять не равно семи минус три).

Такие записи называются неравенствами. Однако такого рода неравенства часто оставляют некоторую неудовлетворенность. Вряд ли Денис скажет:

— Мой возраст неравен возрасту Матвея.

Скорее всего, он выразится так:

— Я старше Матвея. Мне больше лет, чем ему. Матвей младше меня. Ему меньше лет, чем мне.

Мы знаем, что Денису 7 лет, а Матвею 5. Мы можем записать так:

7 > 5 (читается: семь больше пяти; или: семь больше, чем пять)

5 5 + 3 (семь плюс три больше, чем пять плюс три);
5 + 3 » («больше») или « 2 > 1 > 0.

Допустимы также смешанные цепочки, в которых присутствуют как равенства, так и неравенства. Пусть, например, спрашивается: что больше:

Ответ на этот вопрос удобно представить в следующем виде:

7 + 3 = 10 > 8 = 5 + 3.

Вероятно, иногда Денису захочется сказать так:

— Я старше Матвея на два года. Мне на два года больше, чем ему. Матвей младше меня на два года. Ему на два года меньше, чем мне.

Читайте также:  Экстремальные способы экономии все выпуски

Чтобы это записать с помощью чисел, снова понадобятся равенства. Такую запись можно сделать разными способами:

7 = 5 + 2;
5 = 7 − 2;
2 = 7 − 5.

Теперь поговорим о словах, которые принято употреблять, когда мы говорим об умножении и делении нацело. Пусть дано равенство

Эту запись можно прочитать следующими разными способами:

3 умножить на 5 равно 15;
произведение чисел 3 и 5 равно 15;
число 3 увеличили в 5 раз и получили 15;
число 5 увеличили в 3 раза и получили 15;
число 15 в 5 раз больше числа 3;
число 3 в 5 раз меньше числа 15;
число 15 в 3 раза больше числа 5;
число 5 в 3 раза меньше числа 15.

«Роли» распределяются таким образом:

первый сомножитель ∙ второй сомножитель = произведение

В школе произведения всех чисел, которые меньше или равны десяти, записывают в виде большой скучной таблицы, называемой таблицей умножения. Эту таблицу заставляют учить наизусть. Для облегчения зубрежки, в русском языке для произведений из таблицы умножения имеются специальные названия, например,

2 ∙ 2 — дважды два;
3 ∙ 6 — трижды шесть;
4 ∙ 5 — четырежды пять;
5 ∙ 8 — пятью восемь
и тому подобное.

Рассмотрим теперь равенство

Прочесть эту запись можно так:

15 поделить на 3 равно 5;
15 разделить на 3 равно 5;
частное от деления числа 15 на число 3 равно 5;
отношение чисел 15 и 3 равно 5;
число 15 в 3 раза больше числа 5;
число 5 в 3 раза меньше числа 15.

«Роли» распределяются так:

делимое / делитель = частное

2.1.1. Какие два числа надо сложить, чтобы результат был равен четырем? Выписать все возможные ответы.

2.1.2. Какое число надо вычесть из какого, чтобы результат был равен двум? Написать один из возможных ответов.

2.1.3. Указать, что из следующих записей является выражением, что равенством, что неравенством, что бессмыслицей. Какие из равенств и неравенств являются верными, а какие нет?

1
10
10 +
10 + 8
10 + 8 =
10 + 8 = 1
10 + 8 = 18
2
25
25 −
25 − 5
25 − 5 >
25 − 5 > 1
25 − 5 > 10
25 − 5 > 10 +
25 − 5 > 10 + 2
25 − 5 > 10 + 20

2.1.4. Найти значение выражений

37 + 54
98 − 73
и т.п.

2.1.5. Сравнить выражения (поставить между ними знак «=», «>» или « 71 − 16 = 55.

2.1.6. У Дениса 25 конфет, а у Матвея на 3 конфеты меньше. Сколько конфет у Матвея?

2.1.7. У Дениса 25 конфет, а у Матвея на 3 конфеты больше. Сколько конфет у Матвея?

2.1.8. У Дениса 25 конфет, а у Матвея 23 конфеты. У кого конфет больше и насколько?

2.1.9. У Дениса 33 конфеты, а у Матвея 35 конфет. У кого конфет меньше и насколько?

2.1.10. У Дениса было 25 конфет, а у Матвея было 23 конфеты. Денис съел 4 конфеты. У кого конфет теперь больше и насколько?

2.1.11. (Маленькая провокация) У Дениса было 25 конфет, а у Матвея было 23 конфеты. Денис съел 2 конфеты. У кого конфет теперь меньше и насколько?

2.1.12. У Дениса было 25 конфет, а у Матвея 23 конфеты. Денис съел 14 конфет, а Матвей съел 10 конфет. У кого конфет стало больше и насколько?

2.1.13. Папа дал Денису 10 конфет, а Матвею 5 конфет. Матвей сказал: «Так нечестно», — и попросил Дениса поделиться с ним еще конфетами. После этого Денис дал Матвею 2 конфеты. Стало ли у них конфет поровну? Если нет, у кого больше и насколько?

2.1.14. Денису 7 лет, а Матвею 5 лет. Сколько лет будет Матвею, когда Денису будет 10 лет? Сколько лет будет Денису, когда Матвею будет 10 лет?

2.1.15. У Дениса 20 конфет, а у Матвея в два раза меньше. Сколько конфет у Матвея?

2.1.16. У Дениса 5 конфет, а у Матвея в 3 раза больше. Сколько конфет у Матвея?

2.1.17. Начиная с этого этапа, задачи можно брать из пособий и задачников, официально рекомендованных для школьников и продающихся в книжных магазинах. Однако такие задачи часто сформулированы весьма заумно и требуют дополнительного редактирования. Например, имеется следующая задача (О. В. Узорова. 3000 задач и примеров по математике: 3-4 кл. Москва, 2001):

«Камни, которые врезаются в атмосферу Земли и полностью в ней сгорают, называются метеорами. Они загораются на высоте 100 км, и, горя, летят еще 30 км. Сколько километров до Земли остается пролететь пыли и пеплу от этого метеора?»

Если предложить ребенку задачу именно в таком виде, то есть риск погрязнуть в объяснениях относительно того, откуда берутся метеоры, чем они отличаются от метеоритов, что такое атмосфера, почему тела нагреваются при трении о воздух, и, вообще, как устроена Вселенная. Это всё вещи, конечно, интересные, но, раз уж мы решили заниматься математикой, то лучше ту же самую задачу перевести на более привычный язык. Вот один из возможных вариантов:

«От подъезда дома до магазина, где продается мороженое, 100 шагов. Папа отправился в магазин, чтобы купить Денису мороженое. Он прошел уже 30 шагов. Сколько шагов ему осталось пройти?»

Источник

Оцените статью
Разные способы