Как вычислить определитель третьего порядка двумя способами

Математика — онлайн помощь

Пусть дана квадратная матрица третьего порядка

Определителем третьего порядка, соответствующим данной квадратной матрице А, называется число

(1.7)

Определитель третьего порядка обозначается символом

(1.8)

где числа называются его элементами.

Индексы у элемента показывают номера строки и столбца, на пересечении которых записан этот элемент.

Например, элемент расположен на пересечении второй строки и третьего столбца .

Элементы образуют главную диагональ определителя, а элементы побочную диагональ.

Определение имеет сложный по форме вид, поэтому для нахождения определителя третьего порядка предложены более простые правила. Так, согласно правилу треугольников необходимо:

  1. вычислить с собственными знаками произведения элементов , лежащих на главной диагонали и в вершинах двух равнобедренных треугольников, основания которых параллельны этой диагонали ;
  2. найти произведения элементов, лежащих на побочной диагонали и в вершинах двух равнобедренных треугольников, основания которых параллельны побочной диагонали, и взять их с противоположными знаками ;
  3. найти общую сумму всех произведений.

Все свойства определителей второго порядка справедливы и для определителей третьего порядка. Доказательства этих свойств основаны на вычислении определителя третьего порядка по формуле (1.7).

Например, покажем, что определитель, у которого элементы двух его строк пропорциональны, равен нулю. Действительно,

Аналогично проверяется справедливость и других свойств.

Пусть дан определитель (1.8) третьего порядка.

ОПРЕДЕЛЕНИЕ 1.9: Минором элемента , где определителя третьего порядка, называется определитель второго порядка, полученный из данного вычеркиванием й строки и го столбца. Так, например, минор элемента есть определитель

а минор элемента есть

С помощью миноров определитель (7) можно записать в виде

(1.9)

ОПРЕДЕЛЕНИЕ 1.10: Алгебраическим дополнением элемента , где , называется минор этого элемента, взятый со знаком . По определению 4.3 имеем

где / (1.10)

и т.д.

ТЕОРЕМА 1.1 Разложение определителя по элементам строки или столбца

Определитель третьего порядка равен сумме произведений элементов любой его строки (столбца) на их алгебраические дополнения. Иными словами, имеют место шесть равенств:

(1.11)

Проверим, например, справедливость равенства

Согласно определениям минора и алгебраического дополнения получим

ТЕОРЕМА 1.2 Сумма произведений элементов какой- либо строки (столбца) определителя на алгебраические дополнения элементов любой другой его строки (столбца) равна нулю.

Для определенности выберем элементы первой строки и алгебраические дополнения элементов второй строки определителя. Составим сумму произведений и покажем, что эта сумма равна нулю.

Аналогично проверяется равенство нулю и всех других подобных сумм.

В заключение рассмотрим схему использования свойств определителя и теоремы разложения при вычислении определителя.

Вычислить определитель

Решение. Разложим определитель по элементам третьей строки.

Вычислить определитель

Решение. Прибавляя ко второй строке первую, умноженную на — 8,

получим Раскладывая этот определитель по элементам второй его строки, найдем

Уважаемые студенты
На нашем сайте можно получить помощь по всем разделам математики и другим предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

Определитель матрицы: алгоритм и примеры вычисления определителя матрицы

Определитель (детерминант) матрицы — некоторое число, с которым можно сопоставить любую квадратную матрицу А = ( a i j ) n × n .

|А|, ∆ , det A — символы, которыми обозначают определитель матрицы.

Способ вычисления определителя выбирают в зависимости от порядка матрицы.

Определитель матрицы 2-го порядка вычисляют по формуле:

d e t A = 1 — 2 3 1 = 1 × 1 — 3 × ( — 2 ) = 1 + 6 = 7

Определитель матрицы 3-го порядка: правило треугольника

Чтобы найти определитель матрицы 3-го порядка, необходимо одно из правил:

  • правило треугольника;
  • правило Саррюса.

Как найти определитель матрицы 3-го порядка по методу треугольника?

а 11 а 12 а 13 а 21 а 22 а 23 а 31 а 32 а 33 = a 11 × a 22 × a 33 + a 31 × a 12 × a 23 + a 21 × a 32 × a 13 — a 31 × a 22 × a 13 — a 21 × a 12 × a 33 — a 11 × a 23 × a 32

А = 1 3 4 0 2 1 1 5 — 1

d e t A = 1 3 4 0 2 1 1 5 — 1 = 1 × 2 × ( — 2 ) + 1 × 3 × 1 + 4 × 0 × 5 — 1 × 2 × 4 — 0 × 3 × ( — 1 ) — 5 × 1 × 1 = ( — 2 ) + 3 + 0 — 8 — 0 — 5 = — 12

Правило Саррюса

Чтобы вычислить определитель по методу Саррюса, необходимо учесть некоторые условия и выполнить следующие действия:

  • дописать слева от определителя два первых столбца;
  • перемножить элементы, которые расположены на главной диагонали и параллельных ей диагоналях, взяв произведения со знаком «+»;
  • перемножить элементы, которые расположены на побочных диагоналях и параллельных им, взяв произведения со знаком «—».

а 11 а 12 а 13 а 21 а 22 а 23 а 31 а 32 а 33 = a 11 × a 22 × a 33 + a 31 × a 12 × a 23 + a 21 × a 32 × a 13 — a 31 × a 22 × a 13 — a 21 × a 12 × a 33 — a 11 × a 23 × a 32

А = 1 3 4 0 2 1 — 2 5 — 1 1 3 0 2 — 2 5 = 1 × 2 × ( — 1 ) + 3 × 1 × ( — 2 ) + 4 × 0 × 5 — 4 × 2 × ( — 2 ) — 1 × 1 × 5 — 3 × 0 × ( — 1 ) = — 2 — 6 + 0 + 16 — 5 — 0 = 3

Методы разложения по элементам строки и столбца

Чтобы вычислить определитель матрицу 4-го порядка, можно воспользоваться одним из 2-х способов:

  • разложением по элементам строки;
  • разложением по элементам столбца.

Представленные способы определяют вычисление определителя n как вычисление определителя порядка n-1 за счет представления определителя суммой произведений элементов строки (столбца) на их алгебраические дополнения.

Разложение матрицы по элементам строки:

d e t A = a i 1 × A i 1 + a i 2 × A i 2 + . . . + а i n × А i n

Разложение матрицы по элементам столбца:

d e t A = а 1 i × А 1 i + а 2 i × А 2 i + . . . + а n i × А n i

Если раскладывать матрицу по элементам строки (столбца), необходимо выбирать строку (столбец), в которой(-ом) есть нули.

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0

  • раскладываем по 2-ой строке:

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0 = 2 × ( — 1 ) 3 × 1 — 1 3 — 2 5 1 3 1 0 = — 2 × 1 — 1 3 4 5 1 2 1 0 + 1 × 0 — 1 3 — 2 5 1 3 1 0

  • раскладываем по 4-му столбцу:

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0 = 3 × ( — 1 ) 5 × 2 1 0 — 2 4 5 3 2 1 + 1 × ( — 1 ) 7 × 0 1 — 1 2 1 0 3 2 1 = — 3 × 2 1 0 — 2 4 5 3 2 1 — 1 × 0 1 — 1 2 1 0 3 2 1

Свойства определителя

  • если преобразовывать столбцы или строки незначительными действиями, то это не влияет на значение определителя;
  • если поменять местами строки и столбцы, то знак поменяется на противоположный;
  • определитель треугольной матрицы представляет собой произведение элементов, которые расположены на главной диагонали.

Пример 6

А = 1 3 4 0 2 1 0 0 5

d e t А = 1 3 4 0 2 1 0 0 5 = 1 × 5 × 2 = 10

Определитель матрицы, который содержит нулевой столбец, равняется нулю.

Источник

Методы вычисления определителя третьего порядка

Определители и способы их вычисления

Определитель – это число, соответствующее квадратной матрице, вычисленное определенным образом.

Определителем второго порядка называется число, определяемое равенством:

.

Пример 3.1.

.

Определителем третьего порядка называется число, определяемое квадратной матрицей третьего порядка.

1.Метод треугольников (метод Саррюса)

То есть, если элементы определителя третьего порядка записать в таблицу , то правило его вычисления может быть представлено на рисунке 1, и определитель будет равен алгебраической сумме всех произведений, причем произведения первой таблицы берут со знаком “+”, а второй – со знаком “–”.

Рис. 1

Это правило называется правилом Саррюса.

2. Метод дописывания двух столбцов.

Этот способ вычисления определителя третьего порядка заключается в дописывании первых двух столбцов определителя и нахождении суммы произведений по главной диагонали и параллелях к ней за вычетом суммы произведений побочной диагонали и параллелях к ней, т.е.

Пример 3.2. Вычислить определитель двумя способами

3. Третий способ вычисления определителя основан на теореме разложения.

Минором элемента определителя называется определитель, полученный из данного путем вычеркивания -й строки и -го столбца, на пересечении которых расположен этот элемент.

Например, минором элемента определителя

,

т.е. из исходного определителя были вычеркнуты вторая строка и третий столбец.

Алгебраическим дополнением элемента называется минор этого элемента, умноженный на . То есть, если сумма номеров строки и столбца, на пересечении которых стоит этот элемент является четным числом, то минор берут со знаком “+”, а если нечетным, то со знаком “–”.

При этом полезно иметь в виду следующую схему:

где знаком плюс отмечены места тех элементов, для которых алгебраические дополнения равны минорам, взятым с их собственным знаком; и знаком минус те, для которых алгебраические дополнения равны минорам, взятым с противоположным знаком.
Теорема разложения Определитель равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения.

Пример 3.3. Вычислить определитель путем разложения: а) по второй строке; б) по третьему столбцу.

а)

б)

Замечание. Если в задании не указано, по какому столбцу (строке) проводить разложение, то лучше выбирать столбец (строку) с большим числом нулей.

Определитель -го порядка задается квадратной таблицей чисел (элементов определителя), имеющей строк и столбцов, обозначается символом

.

Вычисление определителей порядка больше 3, рекомендуется проводить с помощью теоремы разложения.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Читайте также:  Эффективные способы управления конфликтами
Оцените статью
Разные способы