2.2.5. Формула для вычисления дисперсии
Данная формула выводится непосредственно из определения дисперсии, и мы незамедлительно пускаем её в оборот. Скопирую сверху табличку с нашей игрой:
и найденное матожидание .
Вычислим дисперсию вторым способом. Сначала найдём математическое ожидание – квадрата случайной величины . По определению математического ожидания, значения случайной величины следует перемножить на соответствующие вероятности и эти произведения сложить:
в данном случае:
Таким образом, по формуле:
Как говорится, почувствуйте разницу. И на практике, конечно, лучше применять формулу (если иного не требует условие).
Осваиваем технику решения и оформления:
Задача 87
Дискретная случайная величина задана своим законом распределения:
Найти её математическое ожидание, дисперсию и среднее квадратическое отклонение.
Эта задача встречается повсеместно, и, как правило, идёт без содержательного смысла. Но желающие могут представить четыре лампочки с числами, которые загораются в дурдоме с определёнными вероятностями 🙂
Решение: Основные вычисления удобно свести в таблицу. Сначала в верхние две строки записываем исходные данные. Затем рассчитываем произведения , затем и, наконец, суммы в правом столбце:
Собственно, почти всё готово. В третьей строке нарисовалось готовенькое математическое ожидание: .
Дисперсию вычислим по формуле:
И, наконец, среднее квадратическое отклонение:
– лично я обычно округляю результат до 2 знаков после запятой.
Все вычисления можно провести на калькуляторе, а ещё лучше – в Экселе (ссылка на видеоролик на Ютубе). Вот здесь вот уже будет трудно ошибиться.
Ответ:
Пара заданий для самостоятельного решения:
Задача 88
Вычислить дисперсию случайной величины предыдущего примера по определению.
…встречается и такая задача, я ничего не придумываю. Почти J
И аналогичный пример:
Задача 89
Дискретная случайная величина задана своим законом распределения:
Найти
Да, значения случайной величины бывают достаточно большими, и здесь по возможности лучше использовать Эксель.
И в заключение параграфа разберём ещё одну типовую задачу, можно даже сказать, небольшой ребус:
Задача 90
Дискретная случайная величина может принимать только два значения: и , причём . Известна вероятность , математическое ожидание и дисперсия .
Найти .
Решение: начнём с неизвестной вероятности. Так как случайная величина может принять только два значения, то сумма вероятностей соответствующих событий:
и поскольку , то .
Осталось найти …, легко сказать 🙂 Но да ладно, понеслось. По определению математического ожидания:
– подставляем известные величины:
– и больше из этого уравнения ничего не выжать, разве что можно переписать его в привычном направлении:
ОК, едем дальше. По формуле вычисления дисперсии:
– подставляем известные данные:
и реверанс:
О дальнейших действиях, думаю, вы догадываетесь. Составим и решим систему:
Десятичные дроби – это, конечно, безобразие, умножаем оба уравнения на 5:
Вот так-то лучше. Из 1-го уравнения выражаем:
(это более простой путь) – подставляем во 2-е уравнение:
Возводим разность в квадрат и проводим упрощения:
В результате получено квадратное уравнение, находим его дискриминант:
и извлекаем из него корень:
– отлично, целое значение, значит, мы на верном пути.
Таким образом, у нас получаются два решения:
1) если , то ;
2) если , то .
Условию удовлетворяет первая пара корней. С высокой вероятностью всё правильно, но, тем не менее, запишем закон распределения:
и выполним проверку, а именно, найдём матожидание:
и дисперсию:
В результате получены исходные значения, что и требовалось проверить.
Ответ: …да, вроде бы такие простенькие числа, но вычисления…, и поэтому в этой задаче следует проявлять повышенное внимание.
Переходим к графическому представлению дискретной случайной величины:
Полную и свежую версию этой книги в pdf-формате ,
а также курсы по другим темам можно найти здесь.
Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!
С наилучшими пожеланиями, Александр Емелин
Источник
Дисперсия, виды и свойства дисперсии
Понятие дисперсии
Дисперсия в статистике находится как среднее квадратическое отклонение индивидуальных значений признака в квадрате от средней арифметической. В зависимости от исходных данных она определяется по формулам простой и взвешенной дисперсий:
1. Простая дисперсия (для несгруппированных данных) вычисляется по формуле:
2. Взвешенная дисперсия (для вариационного ряда):
где n — частота (повторяемость фактора Х)
Пример нахождения дисперсии
На данной странице описан стандартный пример нахождения дисперсии, также Вы можете посмотреть другие задачи на её нахождение
Пример 1. Имеются следующие данные по группе из 20 студентов заочного отделения. Нужно построить интервальный ряд распределения признака, рассчитать среднее значение признака и изучить его дисперсию
Построим интервальную группировку. Определим размах интервала по формуле:
где X max– максимальное значение группировочного признака;
X min–минимальное значение группировочного признака;
n – количество интервалов:
Принимаем n=5. Шаг равен: h = (192 — 159)/ 5 = 6,6
Составим интервальную группировку
Для дальнейших расчетов построим вспомогательную таблицу:
X’i– середина интервала. (например середина интервала 159 – 165,6 = 162,3)
Среднюю величину роста студентов определим по формуле средней арифметической взвешенной:
Определим дисперсию по формуле:
Формулу дисперсии можно преобразовать так:
Из этой формулы следует, что дисперсия равна разности средней из квадратов вариантов и квадрата и средней.
Дисперсия в вариационных рядах с равными интервалами по способу моментов может быть рассчитана следующим способом при использовании второго свойства дисперсии (разделив все варианты на величину интервала). Определении дисперсии, вычисленной по способу моментов, по следующей формуле менее трудоемок:
где i — величина интервала;
А — условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой;
m1 — квадрат момента первого порядка;
m2 — момент второго порядка
Дисперсия альтернативного признака (если в статистической совокупности признак изменяется так, что имеются только два взаимно исключающих друг друга варианта, то такая изменчивость называется альтернативной) может быть вычислена по формуле:
Подставляя в данную формулу дисперсии q =1- р, получаем:
Виды дисперсии
Общая дисперсия измеряет вариацию признака по всей совокупности в целом под влиянием всех факторов, обуславливающих эту вариацию. Она равняется среднему квадрату отклонений отдельных значений признака х от общего среднего значения х и может быть определена как простая дисперсия или взвешенная дисперсия.
Внутригрупповая дисперсия характеризует случайную вариацию, т.е. часть вариации, которая обусловлена влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Такая дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы X от средней арифметической группы и может быть вычислена как простая дисперсия или как взвешенная дисперсия.
Таким образом, внутригрупповая дисперсия измеряет вариацию признака внутри группы и определяется по формуле:
где хi — групповая средняя;
ni — число единиц в группе.
Например, внутригрупповые дисперсии, которые надо определить в задаче изучения влияния квалификации рабочих на уровень производительности труда в цехе показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (техническое состояние оборудования, обеспеченность инструментами и материалами, возраст рабочих, интенсивность труда и т.д.), кроме отличий в квалификационном разряде (внутри группы все рабочие имеют одну и ту же квалификацию).
Средняя из внутри групповых дисперсий отражает случайную вариацию, т. е. ту часть вариации, которая происходила под влиянием всех прочих факторов, за исключением фактора группировки. Она рассчитывается по формуле:
Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, которая обусловлена влиянием признака-фактора, положенного в основание группировки. Она равняется среднему квадрату отклонений групповых средних от общей средней. Межгрупповая дисперсия рассчитывается по формуле:
Правило сложения дисперсии в статистике
Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:
Смысл этого правила заключается в том, что общая дисперсия, которая возникает под влиянием всех факторов, равняется сумме дисперсий, которые возникают под влиянием всех прочих факторов, и дисперсии, возникающей за счет фактора группировки.
Пользуясь формулой сложения дисперсий, можно определить по двум известным дисперсиям третью неизвестную, а также судить о силе влияния группировочного признака.
Свойства дисперсии
1. Если все значения признака уменьшить (увеличить) на одну и ту же постоянную величину, то дисперсия от этого не изменится.
2. Если все значения признака уменьшить (увеличить) в одно и то же число раз n, то дисперсия соответственно уменьшится (увеличить) в n^2 раз.
Источник