- Сравнение дробей: правила, примеры, решения.
- Сравнение дробей с одинаковыми знаменателями
- Сравнение дробей с разными знаменателями
- Сравнение дробей с одинаковыми числителями
- Сравнение дроби с натуральным числом
- Сравнение обыкновенных дробей
- Сравнение дробей с одинаковыми знаменателями
- Сравнение дробей с одинаковыми числителями
- Сравнение дробей с разными знаменателями и числителями
- Онлайн калькулятор сравнения дробей
- Сравнение дробей
- Сравнение дробей с одинаковыми знаменателями
- Сравнение дробей с одинаковыми числителями
- Сравнение дробей с разными знаменателями
Сравнение дробей: правила, примеры, решения.
В центре внимания данной статьи стоит сравнение дробей. Мы уже знаем про равные и неравные дроби. Две неравные дроби подлежат дальнейшему сравнению для выяснения, какая дробь больше, а какая дробь меньше. Для сравнения двух дробей существует правило сравнения дробей, которое мы сформулируем ниже, а также разберем примеры применения этого правила при сравнении дробей с одинаковыми и разными знаменателями. В заключение покажем, как сравнить дроби с одинаковыми числителями, не приводя их к общему знаменателю, а также рассмотрим, как сравнить обыкновенную дробь с натуральным числом.
Навигация по странице.
Сравнение дробей с одинаковыми знаменателями
Сравнение дробей с одинаковыми знаменателями по сути является сравнением количества одинаковых долей. К примеру, обыкновенная дробь 3/7 определяет 3 доли 1/7 , а дробь 8/7 соответствует 8 долям 1/7 , поэтому сравнение дробей с одинаковыми знаменателями 3/7 и 8/7 сводится к сравнению чисел 3 и 8 , то есть, к сравнению числителей.
Из этих соображений вытекает правило сравнения дробей с одинаковыми знаменателями: из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше, и меньше та дробь, числитель которой меньше.
Озвученное правило объясняет, как сравнить дроби с одинаковыми знаменателями. Рассмотрим пример применения правила сравнения дробей с одинаковыми знаменателями.
Какая дробь больше: 65/126 или 87/126 ?
Знаменатели сравниваемых обыкновенных дробей равны, а числитель 87 дроби 87/126 больше числителя 65 дроби 65/126 (при необходимости смотрите сравнение натуральных чисел). Поэтому, согласно правилу сравнения дробей с одинаковыми знаменателями, дробь 87/126 больше дроби 65/126 .
.
Сравнение дробей с разными знаменателями
Сравнение дробей с разными знаменателями можно свести к сравнению дробей с одинаковыми знаменателями. Для этого лишь нужно сравниваемые обыкновенные дроби привести к общему знаменателю.
Итак, чтобы сравнить две дроби с разными знаменателями, нужно
- привести дроби к общему знаменателю;
- сравнить полученные дроби с одинаковыми знаменателями.
Разберем решение примера.
Сравните дробь 5/12 с дробью 9/16 .
Сначала приведем данные дроби с разными знаменателями к общему знаменателю (смотрите правило и примеры приведения дробей к общему знаменателю). В качестве общего знаменателя возьмем наименьший общий знаменатель, равный НОК(12, 16)=48 . Тогда дополнительным множителем дроби 5/12 будет число 48:12=4 , а дополнительным множителем дроби 9/16 будет число 48:16=3 . Получаем и
.
Сравнив полученные дроби, имеем . Следовательно, дробь 5/12 меньше, чем дробь 9/16 . На этом сравнение дробей с разными знаменателями завершено.
.
Получим еще один способ сравнения дробей с разными знаменателями, который позволит выполнять сравнение дробей без их приведения к общему знаменателю и всех сложностей, связанных с этим процессом.
Для сравнения дробей a/b и c/d , их можно привести к общему знаменателю b·d , равному произведению знаменателей сравниваемых дробей. В этом случае дополнительными множителями дробей a/b и c/d являются числа d и b соответственно, а исходные дроби приводятся к дробям и
с общим знаменателем b·d . Вспомнив правило сравнения дробей с одинаковыми знаменателями, заключаем, что сравнение исходных дробей a/b и c/d свелось к сравнению произведений a·d и c·b .
Отсюда вытекает следующее правило сравнения дробей с разными знаменателями: если a·d>b·c , то , а если a·d , то
.
Рассмотрим сравнение дробей с разными знаменателями этим способом.
Сравните обыкновенные дроби 5/18 и 23/86 .
В этом примере a=5 , b=18 , c=23 и d=86 . Вычислим произведения a·d и b·c . Имеем a·d=5·86=430 и b·c=18·23=414 . Так как 430>414 , то дробь 5/18 больше, чем дробь 23/86 .
.
Сравнение дробей с одинаковыми числителями
Дроби с одинаковыми числителями и разными знаменателями, несомненно, можно сравнивать с помощью правил, разобранных в предыдущем пункте. Однако, результат сравнения таких дробей легко получить, сравнив знаменатели этих дробей.
Существует такое правило сравнения дробей с одинаковыми числителями: из двух дробей с одинаковыми числителями больше та, у которой меньше знаменатель, и меньше та дробь, знаменатель которой больше.
Рассмотрим решение примера.
Сравните дроби 54/19 и 54/31 .
Так как числители сравниваемых дробей равны, а знаменатель 19 дроби 54/19 меньше знаменателя 31 дроби 54/31 , то 54/19 больше 54/31 .
.
В заключение этого пункта приведем пример, хорошо иллюстрирующий основную суть озвученного правила сравнения дробей с одинаковыми числителями. Пусть перед нами две тарелки, на одной из них 1/2 пирога, а на другой 1/16 этого же пирога. Понятно, что скушав половину пирога, мы будем куда больше сыты, чем съев 1/16 его часть.
Сравнение дроби с натуральным числом
Сравнение обыкновенной дроби с натуральным числом сводится к сравнению двух дробей, если число записать в виде дроби со знаменателем 1 (смотрите натуральное число как дробь со знаменателем 1). Рассмотрим решение примера.
Сравните дробь 63/8 и число 9 .
Число 9 можно представить как дробь 9/1 , этим сравнение дроби 63/8 и числа 9 сводится к сравнению дробей 63/8 и 9/1 . После их приведения к общему знаменателю 8 , получаем дроби с одинаковым знаменателем 63/8 и 72/8 . Так как 63 , то , следовательно,
.
.
Источник
Сравнение обыкновенных дробей
Сравнить две дроби — значит определить, какая из дробей больше, какая меньше или установить, что дроби равны.
Сравнение дробей с одинаковыми знаменателями
Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше.
Пример. Дробь больше чем дробь
, потому что доли в обеих дробях одинаковы, но в первой дроби их больше, чем во второй.
Если изобразим единицу отрезком и разделим его на 8 долей, то легко увидеть, что дробь больше
:
Сравнение дробей с одинаковыми числителями
Из двух дробей с одинаковыми числителями больше та дробь, у которой знаменатель меньше.
Пример. Дробь больше чем дробь
, потому что число долей в обеих дробях одинаково, но в первой дроби доли крупнее, чем во второй.
Изобразим две единицы в виде кругов, один разделим на 4 доли, второй на 6 долей. Теперь можно увидеть, что дробь больше
:
Сравнение дробей с разными знаменателями и числителями
Чтобы сравнить дроби, у которых разные числители и знаменатели, нужно привести их к общему знаменателю. После этого их сравнивают по правилу сравнения дробей, у которых одинаковые знаменатели.
Пример. Сравните дроби: и
.
Решение: приводим данные дроби к общему знаменателю:
Теперь сравниваем их по правилу сравнения дробей, у которых одинаковые знаменатели. Так как , значит
.
Приведём ещё один способ сравнения дробей с разными знаменателями и числителями. Рассмотрим сначала числовой пример.
Пример. Сравним дроби и
.
Решение: приводим данные дроби к общему знаменателю:
Решая данный пример можно заметить, что, после приведения дробей к общему знаменателю, задача сравнения свелась фактически к сравнению произведений
Так как 2 · 7 = 14, а 4 · 3 = 12, то
Значит, .
Теперь решим эту же задачу в общем виде, используя буквенную запись.
Пример. Пусть даны дроби и
, где a и c — нуль или натуральные числа, b и d — натуральные числа. Приведём дроби к общему знаменателю:
- если a · d >c · b, то
- если a · d Пример.
Сравнение неправильной дроби с натуральным числом сводится к сравнению двух дробей.
Чтобы сравнить неправильную дробь с натуральным числом, нужно натуральное число представить в виде неправильной дроби со знаменателем 1, затем их можно сравнить одним из двух способов: используя перекрёстное правило, либо привести дроби к общему знаменателю. После этого их сравнивают по правилу сравнения дробей, у которых одинаковые знаменатели.
Пример. Сравните дробь с числом 5.
Решение: представим число 5 в виде дроби со знаменателем 1:
Приводим дроби к общему знаменателю:
Сравниваем числители, так как 11 Пример.
Онлайн калькулятор сравнения дробей
Данный калькулятор поможет вам сравнить обыкновенные дроби. Просто введите две дроби и нажмите кнопку Сравнить .
Источник
Сравнение дробей
Также как и натуральные числа обыкновенные дроби можно сравнивать.
Рассмотрим две неравные дроби на числовой оси. Меньшая дробь будет располагаться левее, а большая — правее.
Равные дроби соответствует одной и той же точке на числовой оси.
На рисунке хорошо видно, что
1 |
5 |
. Но необязательно пользоваться числовой осью, чтобы сравнивать дроби.
Сравнение дробей с одинаковыми знаменателями
Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше.
Пример. Сравним
1 |
5 |
и
4 |
5 |
.
В обеих дробях одинаковый знаменатель равный 5 .
В первой дроби числитель равен 1 и он меньше числителя второй дроби, который равен 4 .
Поэтому первая дробь
1 |
5 |
меньше второй
4 |
5 |
.
Сравнение дробей с одинаковыми числителями
Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше.
Пример. Сравним
1 |
2 |
и
1 |
8 |
. Ответ:
Правило выше легче понять, если представить, что у вас в руках куски торта. В первом случае торт разделили на 2 части (знаменатель дроби равен 2 ), и у вас в руках половина торта, а во втором — торт поделили на 8 частей, и у вас в руках маленькая часть торта.
Сравнение дробей с разными знаменателями
Чтобы сравнить дроби с разными знаменателями, нужно привести дроби к общему знаменателю.
После приведения дробей к общему знаменателю, дроби сравниваются по правилу сравнения дробей с одинаковыми знаменателями.
Пример. Сравним
2 |
7 |
и
1 |
14 |
.
- Приводим дроби к общему знаменателю.
- Сравниваем дроби с одинаковыми знаменателями.
Любая неправильная дробь больше любой правильной.
Это объясняется тем, что неправильная дробь всегда больше или равна 1 , а правильная дробь всегда меньше 1 .
Источник