- Возникновение первичных организмов. Что такое коацерваты?
- ДАЛЬНЕЙШЕЕ РАЗВИТИЕ ЖИЗНИ
- Чем питались первые живые организмы на Земле?
- Какими были первые живые организмы?
- Чем питались прокариоты?
- От Бульона до Эукариот. Первый организм и наш древнейший предок
- Ранняя Земля
- Когда возникла жизнь?
- Мир РНК
- Появление теории и ее предшественники
- Панспермия
- Радикальная гипотеза
- Возникновение клетки
- Прогеноты
- Насколько он древний?
- Условия обитания
- Как выглядел LUCA
- Генетика LUCA
- И еще немного о LUCA
- Заключение
Возникновение первичных организмов. Что такое коацерваты?
Когда на Земле возникли такие белковоподобные вещества, начался новый этап в развитии материи — переход от органических соединений к живым существам. Сначала органические вещества находились в морях и океанах в виде растворов. В них не было какого-либо строения, какой-либо структуры. Но когда растворы белков или других подобных органических соединений смешиваются между собой, из растворов выделяются особые полужидкие, студенистые образования — коацерваты. Например, если смешать прозрачные растворы желатина и яичного альбумина, то они замутятся, и под микроскопом в них можно различить плавающие в воде маленькие резко очерченные капельки.
Это и есть коацерваты. В них концентрируются все находящиеся в несмешанных растворах белковые вещества.
Хотя коацерватные капельки жидкие, в них есть определенное внутреннее строение. Частицы вещества в них расположены не беспорядочно, как в растворе, а с определенной закономерностью.
При образовании коацерватов возникают зачатки организации, правда еще очень примитивной и неустойчивой. Для самой капельки эта организация имеет большое значение. Любая коацерватная капелька способна улавливать из раствора, в котором плавает, те или иные вещества. Они химически присоединяются к веществам самой капельки. Таким образом в ней идет процесс созидания, роста. Но в любой капельке наряду с созиданием идет и распад. Тот или иной из этих процессов, в зависимости от состава и внутреннего строения капельки, идет быстрее и начинает преобладать.
Представим себе, что в каком-нибудь месте первичного океана смешались растворы белковых веществ и образовались коацерватные капельки. Они плавали не в чистой воде, а в растворе разнообразных веществ. Капельки улавливали эти вещества и росли за их счет.
Коацерваты со сложным строением.
Скорость роста отдельных капелек неодинакова. Она зависит от внутреннего строения каждой из них. Если в капельке преобладают процессы разложения, то она скоро распадается. Вещества, ее составляющие, перейдут в раствор и будут поглощены другими капельками. Более или менее длительно будут существовать лишь те капельки, в которых процессы созидания преобладают над процессами распада.
Таким образом, все случайно возникающие, так сказать «неудачные», формы организации сами собой выпадали из процесса дальнейшей эволюции материи.
Каждая отдельная капелька не может расти беспредельно как одна сплошная масса — она распадается на дочерние капельки. По внутреннему строению они сходны с породившей их капелькой. Но каждая капелька в то же время чем-то отлична от своих «сестер» и, отделившись от других, растет и изменяется самостоятельно. В новом поколении все неудачно организованные капельки погибают, разлагаются, а наиболее совершенные участвуют в дальнейшей эволюции материи. Так в процессе становления жизни возник своеобразный естественный отбор коацерватных капелек. Рост коацерватов постепенно ускорялся. Количество организованного вещества на поверхности Земли увеличивалось, усложнялась его организация. В конечном итоге усовершенствование коацерватов привело к новой форме существования материи — к возникновению на Земле простейших живых существ.
ДАЛЬНЕЙШЕЕ РАЗВИТИЕ ЖИЗНИ
Строение этих первичных живых организмов было гораздо совершеннее, чем у коацерватных капелек. Но все же оно было несравненно проще даже самых простых из нынешних живых существ. Естественный отбор, начавшийся в коацерватных капельках, продолжался и с появлением жизни. Проходили века, тысячелетия, и строение живых существ все более улучшалось, приспособлялось к условиям существования.
Вначале пищей для живых существ были только органические вещества, возникшие когда-то из первичных углеводородов. Но с течением времени количество этих веществ уменьшалось, и первичные живые организмы должны были либо погибнуть, либо выработать в себе способность строить органические вещества из элементов неорганической природы — из углекислоты и воды. Некоторым живым существам это удалось. В процессе последовательного развития у них появилась способность поглощать энергию солнечного луча, разлагать за счет этой энергии углекислоту и строить в своем теле из ее углерода и воды органические вещества. Так возникли простейшие растения — сине-зеленые водоросли. Их остатки можно обнаружить в древнейших отложениях земной коры.
Другие живые существа сохранили прежний способ питания, но пищей им стали служить первичные растения, т. е. органические вещества, возникшие через посредство живых организмов. Так возникли в своем первоначальном виде животные.
На заре жизни и растения и животные были мельчайшими одноклеточными существами, подобными живущим в наше время бактериям, сине-зеленым водорослям, амёбам. Большим событием в истории последовательного развития живой природы было возникновение многоклеточных организмов, т. е. состоящих из многих клеток, объединенных в один организм. Постепенно, но значительно быстрее, чем раньше, живые организмы становились все сложнее и разнообразнее.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Источник
Чем питались первые живые организмы на Земле?
На тему возникновения жизни на нашей планете до сих пор ведутся множественные споры. Ученые выдвигают всевозможные теории, например, что живые организмы появились сами собой или попали на Землю из космического пространства. Однако в любом случае для существования и дальнейшего развития им нужно было чем-то питаться.
Какими были первые живые организмы?
Первыми живыми организмами на нашей планете были прокариоты (либо доядерные). Это одноклеточные организмы, характерной особенностью которых является отсутствие ядра и прочих внутренних органоидов. Полной их противоположностью являются эукариоты, в клетках которых есть ядра и те или иные компоненты (органеллы).
История жизни на Земле началась с появления первого живого существа – от 3,7 до 4,1 миллиардов лет назад по различным данным. С этого же момента ведется и отсчет эволюции жизни.
Разница между прокариотами и эукариотами
Прокариоты представлены двумя доменами: бактериями и археями. Точный период их появления спорен, так как у первых организмов не было твердых оболочек. Ученым приходится опираться лишь на химические следы жизни. Они обнаружены в горных породах. По одной из версий организмы возникли в горячих источниках, богатых питательными веществами.
Результатом эволюции стали бактерии и цианобактерии. Они представляли собой тонкий слой слизи на морском дне. Домен археев раньше тоже причисляли к бактериям. Но позже выяснилось, что они имеют свои отличительные особенности и эволюционировали отдельно.
Чем питались прокариоты?
Одним из ключевых свойств живого организма является метаболизм – обмен веществ.
По типу питания первые живые организмы на Земле были гетеротрофами. Это значит, что в качестве источника пищи прокариоты использовали готовые органические соединения, содержащиеся в окружающей среде (в растворенном виде).
Также для них характерен безкислородный (анаэробный) тип обмена веществ, поскольку в тот период свободного кислорода в атмосфере нашей планеты не было. Питательные вещества поглощались доядерными организмами осмотрофным способом – то есть, путем транспортировки пищи через поверхностные компоненты клетки.
Откуда, в таком случае, бралась органика, если ее никто не производил? Органические соединения – это класс химических веществ; почти все соединения, в которых присутствует углерод. Они считаются самыми распространенными в природе.
Первые археи обнаружены в горячих вулканических источниках. На фото: Большой призматический источник, США
Образование органики вне живых организмов называют абиогенезом. Это, в то же время, одна из теорий зарождения жизни на Земле. Проще говоря, из неорганических (неживых) веществ начали формироваться органические. Произошло это, вероятно, под действием различных факторов.
К ним относят активное ультрафиолетовое излучение, ведь защитного озонового слоя еще не существовало. Также большое влияние имела энергия, которая появлялась от радиоактивного распада, молний, тепловых источников. Много органики выделялось в ходе извержения вулканов.
Другим был и состав воздуха. Происходили активные реакции всех этих веществ между собой, в результате которых появились первые простые органические соединения. Оказавшись в воде, они продолжали свое превращение, но уже в более сложные цепочки. Ученые даже присвоили специальное название океаническим водам, покрывающим Землю – «первичный бульон».
Первые живые организмы на Земле, которые были представлены доядерными одноклеточными, питались органическими веществами, имеющимися в природе. Образовывались они абиогенным путем – из неорганических веществ под влиянием различных источников энергии. Непосредственно процесс питания у прокариотов был осмотрофным. Пищу в растворенном виде они поглощали через стенки своих клеток.
Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Источник
От Бульона до Эукариот. Первый организм и наш древнейший предок
Древо Жизни, представленное по трехдоменной классификации Карла Вёзе. Первыми живыми организмами считаются представители РНК-мира — предшественники клетки в виде рибозимов (каталитических РНК). Условно всю допрокариотную организацию называют «прогенотами». Одной из следующих стадий эволюции является последний общий предок — клеточный организм, предшествующий разделению всего живого на три домена: Бактерии (Eubacteria), Археи (Archaea) и Эукариоты (Eukarya).
Автор
Редактор
Одной из главных причин, по которой мы изучаем биологию, является желание понять наше происхождение. Чем больше ископаемых остатков мы изучим, тем больше ветвей добавится к нашему биологическому древу. Но все ветви растут из единого ствола. Так кто же находится у корней?
Ранняя Земля
Во время первых стадий своего формирования Земля кардинально отличалась от той картинки, с которой она ассоциируется у большинства из нас. Было время, когда не существовало жизни и даже намеков на нее. Внешний вид планеты и условия на ней представить довольно сложно, но возможно. После столкновения с Тейей (рис. 1), в результате которого образовалась Луна [1], вся поверхность Земли превратилась в магму с температурой выше 2000 °С. Началось испарение силикатов и водяного пара. В такой протоатмосфере были метан и углекислый газ, благодаря которым создавался сильнейший парниковый эффект.
Рисунок 1. Так художник Билл Карр (Bill Carr) изобразил последствия столкновения Земли с гипотетической Тейей
Впоследствии CO2 начал осаждаться в виде карбонатов, ослабляя парниковый эффект, — происходило так называемое «химическое выветривание». В результате конденсировалась влага и формировала первые океаны. Атмосфера состояла преимущественно из остаточного CO2 и водяного пара. С уменьшением парникового эффекта падала и температура, дав возможность образованию твердой поверхности Земли. Со временем температура падала все быстрее, достигнув в итоге пригодных для жизни
Когда возникла жизнь?
В 2015 году американский журнал Proceedings of the National Academy of Sciences опубликовал статью, которая подтверждает, что на Земле жизнь зародилась
4,1 миллиарда лет назад [3]. Геохимик Элизабет Белл и ее коллеги анализировали породы массива Джек Хиллс в Западной Австралии и нашли в одном из цирконов (его датируют 4,1 миллиардами лет) включения углерода. Авторы статьи настаивают на том, что этот циркон образовался среди органических соединений, попадавших в мантию в ходе столкновения тектонических плит. Возможно, именно в этом районе Земли впервые зародилась жизнь.
На вопросы «Когда, где и как появилось первое живое существо?», научное сообщество еще не может дать точного ответа, но оно может рассказать о ранних стадиях эволюции.
Мир РНК
Появление теории и ее предшественники
После открытия структуры ДНК и подробного цитологического анализа современных эукариот ученые пришли к выводу, что для формирования подобной структуры из первичного бульона ушло бы больше времени, чем существует Вселенная! Также было выяснено, что на тогдашней Земле отсутствовали в нужном объеме многие химические элементы, в частности фосфор, необходимые для формирования такой сложной структуры как эукариотическая клетка [2]. По этим и другим причинам господствующая теория абиогенеза отошла на второй план, и начались поиски другой теории, объясняющей появление современной клетки.
Самой очевидной и простой была теория панспермии (см. врезку) — внеземного происхождения жизни на более пригодной планете и ее распространения на Землю с одним из небесных тел (рис. 2) [4]. Одним из главных аргументов является малое количество на Земле молибдена — элемента, содержащегося во многих жизненно необходимых ферментах. Но все же гипотеза не объясняет происхождение самой жизни, а только указывает возможный путь ее попадания на нашу планету в далеком прошлом из неизвестного уголка Вселенной.
Рисунок 2. В космическом пространстве находится множество молекул (в том числе и органических), способных попасть на Землю
Панспермия
Рисунок 3. Отрывок комикса на тему теории панспермии
Первым высказал идею панспермии (рис. 3) древнегреческий мыслитель Анаксагор в 5 веке до нашей эры, но свое развитие теория получила лишь в 20 веке нашей эры. Фред Хойл и Чандра Викрамасингх были влиятельными сторонниками панспермии, и в 1974 году они выдвинули гипотезу о том, что некоторая пыль в межзвездном пространстве содержит углерод и является органической. Позже их гипотеза подтвердилась [5]. Хойл и Викрамасингх также утверждали, что некие формы жизни продолжают проникать в атмосферу Земли и могут быть ответственны за эпидемические вспышки, новые заболевания и генетическую новизну, необходимую для макроэволюции [6].
Особенно активно эта теория начала развиваться в 21 веке. На МКС с 2008 по 2015 годы проводили эксперименты, связанные с нахождением микроорганизмов в открытом космосе за пределами станции. В течение полутора лет микробы и их споры подвергались воздействию солнечных лучей и вакуума. Некоторые организмы сохранились в неактивном состоянии значительное время [7], и эти образцы, защищенные смоделированным метеоритным материалом, дают экспериментальные подтверждения гипотетического сценария панспермии.
В 2017 году группа российских ученых обнаружила на облицовке МКС споры земных бактерий, подобных микроорганизмам из вод Карского и Баренцева морей. Это означает возможный перенос бактерий из стратосферы в ионосферу с помощью восходящих потоков глобальной электрической цепи Земли [8].
Радикальная гипотеза
Концепцию РНК-мира предложили Френсис Крик [9], Лесли Орджел [10] и Карл Вёзе [11]. Согласно теории, первые молекулы РНК были синтезированы силами неживой природы — при помощи минералов, солнечного света и самопроизвольно идущих химических реакций. После возникла некая молекула РНК, способная копировать другие РНК-молекулы, и с этого момента началась эволюция под действием естественного отбора. Но для выполнения подобных действий РНК должна была обладать каталитической активностью. И это предположение основывалось на том, что РНК способна образовывать сложную вторичную структуру. Позже гипотезу подтвердили результаты исследования Томаса Чека. В 1982 году он изучал механизм сплайсинга РНК у инфузории Tetrahymena thermophila и открыл РНК, катализирующую сплайсинг самой себя (аутосплайсинг) [12]. Это исследование дало возможность представить РНК не только как посредника между ДНК и белками, а как нечто более функционально значимое. Так были открыты рибозимы (от слов «рибонуклеиновая кислота» и «энзим») — молекулы РНК с каталитической функцией (рис. 4).
Позже выяснилось, что многие процессы в клетке происходят благодаря рибозимам. Очень ярким примером является рибосома, активный центр которой представлен катализирующей рРНК.
Итак, теория мира РНК гласит, что первыми прообразами организмов были автокаталитические циклы, состоящие из этих самых рибозимов и работающие в тем или иным образом ограниченном пространстве [13]. Как мы уже сказали выше, в какой-то момент нуклеотиды, самопроизвольно образовавшиеся в первичном бульоне, под действием высоких температур начали соединяться, и образовали макромолекулы — молекулы РНК, которые были способны копировать друг друга. Кроме такой уникальной возможности, РНК могла синтезировать белки на основе структуры других молекул РНК и хранить информацию. То есть все жизненно важные процессы проходили тогда исключительно на основе РНК.
Однако рибонуклеиновая кислота оказалась довольно плохим накопителем информации из-за своей нестабильности и склонности к быстрой деградации. (Исключение могут составлять, например, РНК-вирусы, генетический материал которых защищен капсидом от разрушительного воздействия окружающей среды. Такие вирусы имеют специальный фермент — обратную транскриптазу, — катализирующий синтез ДНК по матрице РНК после попадания вирусного генетического материала в клетку. Однако не стоит забывать, что вирусы не проявляют признаков жизнедеятельности за пределами клетки и полностью зависят от нее.) И впоследствии, с ходом эволюции, РНК передала свои ферментативные функции белкам, а длительное хранение генетической информации — ДНК.
К сожалению, пока исследования показывают, что ни один природный рибозим не может создать копию себя [14] (хотя синтетические уже могут), и поэтому теория мира РНК еще не является полностью доказанной.
Об особенностях РНК-мира вы можете прочитать в этой статье: «РНК у истоков жизни?» [15]. А на тему рибозимов также существует интересный комикс: «РНК: начало (мир РНК)» [16].
Возникновение клетки
Существуют две основные теории происхождения первой протоклетки, которую можно определенно назвать организмом в современном понимании. Оба предположения могли быть реализованы в условиях молодой Земли.
Сторонники первой теории утверждают, что первая протоклетка могла появиться в зонах с геотермической активностью. Под воздействием врéменных высоких температур вода на какой-то период почти полностью испарилась, и полимеры сконцентрировались в скоплениях жирных кислот — образовался прототип клетки. После сухого периода снова вернулась водная среда, и организм мог начать полноценно функционировать. Подобные геоактивные зоны сейчас находятся на Камчатке и в Йеллоустонском парке [17].
Вторая теория подразумевает, что первый организм мог образоваться в зоне океанических гидротермальных источников. Минеральная полупроницаемая оболочка, покрывающая горные породы жерла источника и поры в нем, эффективно отделяла щелочную среду от более кислой. В результате создавался градиент pH, с помощью которого могли синтезироваться первые органические вещества, такие как углекислый газ [17]. Сходство с живым организмом заключается в том, что гидротермальные источники также частично изолированы от внешней среды. Существование жизни в подобных геотермальных неорганических ячейках поддерживалось постоянным притоком необходимых биогенов, особенно водорода, которой не так легко найти где-то в чистом виде, и температурой магмы, шедшей из недр Земли. Сегодня эта гипотеза Уильяма Мартина и Майкла Рассела считается более правдоподобной и реалистичной [18], [19]. Современным аналогом гидротермальных источников могут служить черные курильщики, которые и сейчас являются оазисами жизни посреди пустынного океанского дна (более подробно курильщики описаны под рисунком 7).
Об исследованиях Майкла Рассела рассказывает статья «К вопросу о происхождении жизни» [37]. — Ред.
Прогеноты
В 1977 году Карл Вёзе и Жан Фокс определили прогенота как гипотетическую допрокариотную стадию эволюции клетки:
Эукариоты возникли из прокариот, но только с организационным различием, не филогенетическим. Аналогично прокариоты появились из более примитивных форм жизни. Самые эволюционно ранние организмы называются прогенотами, потому что они еще в процессе развития отношений между генотипом и фенотипом.
The concept of cellular evolution [20]
Как мы видим, термин «прогеноты» охватывает абсолютно всю допрокариотную клеточную организацию без строгой связи между гено- и фенотипом, и в современной литературе прогенотов ставят эволюционно выше представителей РНК-мира (рис. 6), тем самым обозначая все те промежуточные шаги, которые ведут к последнему общему предку (LUCA).
Вопрос о строении прогенотов остается открытым, но кое-что можно сказать уже сейчас. Это были куски генетической информации в виде рибозимной РНК без строго определенного количества генов, изолированные от внешней среды спонтанно собранными фосфолипидными мицеллами (в первичном бульоне содержались все компоненты для образования подобной структуры) [15], [16]. С этой РНК происходили все необходимые для жизнедеятельности процессы — трансляция, репликация и репарация, — но существовала одна значительная проблема. Внутриклеточные процессы зависели от множества факторов внутри- и внеклеточной сред, и по большей части от того, что РНК непригодна для длительного хранения генетической информации, поскольку в агрессивной среде очень быстро деградирует [15].
Однако мы видим явное преимущество прогенотов перед одинокими рибозимными молекулами (и даже их группами) в том, что:
- Прогеноты содержат разнообразные и функционально специализированные РНК-молекулы (информационная РНК, хранящая генетический код, и, например, ферментативная РНК, осуществляющая синтез чего-либо).
- Прогеноты изолированы от внешней среды, что дает базис для возможного развития внутриклеточной структуры и появления настоящей прокариотной клеточной мембраны.
Следующая стадия клетки должна была уже модернизировать внутреннюю систему, создать полупроницаемую мембрану и развить отношения между генотипом и фенотипом, то есть стать прокариотом.
Последним универсальным общим предком всего живого на Земле является LUCA (от англ. Last Universal Common Ancestor). LUCA («Лука») — это гипотетический прокариотный организм, от которого могли бы произойти все три современных домена существ. Теорию последнего универсального общего предка предложил еще Чарльз Дарвин в книге «Происхождение видов» 1859 года (рис. 5).
Рисунок 5. Страница из книги Чарльза Дарвина Origin of species. «Поэтому я должен предположить, что, вероятно, все органические существа, которые когда-либо жили на этой земле, произошли от какой-то одной изначальной формы, в которую впервые вдохнули жизнь».
Насколько он древний?
LUCA жил еще до появления любого из современных представителей земной жизни (рис. 6), до разделения всего живого на эукариот, бактерий и архей (по трехдоменной системе Вёзе) [21–23]. LUCA появился в палеоархее, около 3,6 миллиардов лет назад [24]. Учитывая тот факт, что Земле 4,5 миллиарда лет [25], его можно считать эволюционно очень ранним организмом. Для примера, эукариоты появились только 1,84 миллиарда лет назад, в орозирии [25].
Важно не путать понятия «Луки» и первого живого организма на Земле! Сегодня разграничивают понятия LUCA и progenote.
«Термин “прогеноты” следовало бы использовать для описания гипотетической допрокариотной стадии клеточной эволюции, отличной от последнего общего предка» [26].
Рисунок 6. Новый взгляд на клеточную эволюцию. На схеме старой парадигмы (А) мы можем видеть, что прогеноты были связующим звеном между РНК-миром и новым разнообразным ДНК-миром. Современный подход (В) говорит, что между прогенотами и тремя доменами существовал последний общий предок, который и выполнял эволюционно переходную функцию.
В старой эволюционной парадигме мы видим только одну, одностороннюю, стрелочку, перпендикулярную трем ветвям-доменам — она иллюстрирует теорию эндосимбиогенеза (рис. 6). Теория гласит, что предшественники некоторых органоидов современных эукариот были свободноживущими бактериями, которые попали в эукариотическую клетку и как-то смогли выжить, наладив отношения с клеткой-хозяином. Примером может служить митохондрия, которая до фагоцитоза была свободной альфа-протеобактерией, или же первичные хлоропласты — в прошлом цианобактерии . Первые предположения о внутриклеточном симбиозе высказывали еще в 19 веке по аналогии с недавно открытым лишайником (симбиозом гриба и бактерии) [27]. Подтверждение теория нашла уже во второй половине 20 века одновременно с резким скачком в генетике, цитологии и микробиологии в целом. Кроме аргумента о несинхронности жизненных циклов симбионта и хозяина, появились цитологические и молекулярные, такие как собственный генетический материал симбионтов или рибосомы.
Как происходило приручение митохондрий, в сказочной форме рассказывает статья «Как появились митохондрии (рассказ, похожий на сказку)» [38]. — Ред.
Новая парадигма обзавелась еще одной перпендикулярной стрелкой — LGT (от англ. lateral gene transfer), или горизонтальным переносом генов (рис. 6). Это одна из главных проблем определения генома LUCA. Горизонтальный перенос генов и слияние ранее независимых линий превратили дерево жизни в сеть жизни. Если мы определим общий ген для архей и бактерий, то будет ли он присутствовать у LUCA как последствие обычной вертикальной передачи генов (по наследству) или же из-за этого самого горизонтального переноса? Приведем яркий пример, не пользуясь понятием LGT: у аэробных архей бактериальный тип дыхания. Значит ли это, что археи — потомки (или предки) аэробных бактерий? Как мы знаем, кислород вырабатывается цианобактериями, следовательно, аэробные археи должны были появиться позже них, и тогда о трех доменах не может идти и речи, т.к. у корня биологического древа следует поставить цианобактерий. Но если включить в систему горизонтальный перенос генов, то всё становится на свои места.
Условия обитания
Напомним, что LUCA жил на молодой Земле, с высокими температурами, другим химическим составом Мирового океана и очень изменчивыми погодными условиями. Нужно учитывать эти факторы при описании возможного местообитания. Об условиях жизни LUCA также рассказывает статья «В диких условиях: как жил последний всеобщий предок LUCA» [28].
Благодаря тогдашним климатическим условиям нашей планеты, можно считать LUCA крайним экстремофилом, в связи с чем связано наличие некоторых особенностей его физиологии:
- Учитывая высокие температуры, можно утверждать о присутствии у него гена, кодирующего обратную гиразу, — фермент, обнаруженный преимущественно у всех гипертермофилов [24], [29].
- LUCA точно был хемоавтотрофом, ведь оксигенный фотосинтез появился только через два миллиарда лет. Метаболический путь базировался на водородозависимости LUCA и его автотрофности с возможностью CO2— и N2-фиксации и их последующим превращением в метан [30]. Газообразный водород сложно найти на поверхности земли, но он есть под землей, а точнее под водой. Скорее всего, LUCA жил около гидротермальных источников (рис. 7), схожих с сегодняшними черными курильщиками срединно-океанических хребтов. Кроме водорода, «Луке» были необходимы железо, никель и молибден, которые также можно найти у гидротермальных источников.
Рисунок 7. Гидротермальные источники срединно-океанических хребтов — «черные курильщики». Гипотетическое местообитание LUCA. Вода проникает в океаническую литосферу, разогревается магмой и выплескивается под большим давлением с температурой 300–400 градусов. По пути в ней растворяется много сероводорода, сульфидов и оксидов металлов, твердые частицы которых, выпадая при охлаждении воды, придают ей черную окраску. Черные курильщики — оазисы на океаническом дне, вокруг которых огромное разнообразие форм жизни. И это дает ученым право предположить, что гидротермальные источники являются местом зарождения жизни на Земле.
Как выглядел LUCA
Стоит отметить, что LUCA — прокариот [26] и стоит на эволюционно более высоком уровне, чем прогеноты. Время, ушедшее на преобразование из прогенотов в такой сравнительно сложный организм, было просто колоссальным. За этот период LUCA приобрел ряд усовершенствований, связанных в первую очередь с метаморфозами клеточной мембраны и генома. Наследственная информация была строго упорядочена и представлена в виде правильно оформленной молекулы ДНК (или РНК) в отличие от хаотично плавающих в замкнутом пространстве мицелл кусков РНК прогенотов.
Формированию внутриклеточных структур прогенотов препятствовала их зависимость от внешней среды. Отсутствие частично проницаемой мембраны не давало допрокариотам оставлять все нужные вещества внутри клетки. Но уже на уровне LUCA появляется частичная независимость от внешних факторов, фосфолипидная полупроницаемая мембрана [31], закодированная в геноме, и определенный клеточный цикл [32], [33].
Еще одну гипотезу о морфологии последнего общего предка выдвинул в своей книге «Логика случая. О природе и происхождении биологической эволюции» [39] Евгений Кунин — выдающийся советский и американский биолог с мировым именем, эксперт в эволюционной биологии, который, кстати, в 2014 году выступал судьей номинации «Биоинформатика и молекулярная эволюция» конкурса «био/мол/текст».
По его мнению, возможно, LUCA не имел клеточной организации в современном представлении, это была не отдельная клетка, а сеть организмов, не разделенных мембранами, но уже имеющих ряд важных мембранных белков, таких как компоненты АТФ-синтазы и SRP. Для подобной структуры Кунин предложил использовать обозначение LUCA(S) (Last Ancestral Universal Common State — последнее универсальное предковое состояние). LUCA(S) был разнородной популяцией генетических элементов, которые существовавали в сети неорганических ячеек — компартментов. Таким образом, в подобной системе могли одновременно существовать и РНК, и одноцепочечная ДНК, и даже двухцепочечная ДНК. Появление собственной клеточной мембраны и обособление генома произошли независимо у разных организмов, что и привело к образованию разных во многих смыслах доменов жизни.
Эта гипотеза подтверждается и тем фактом, что основные элементы системы репликации ДНК негомологичны, а также радикальным различием между фосфолипидами, ферментами липидного биосинтеза и эфирными связями у архей и бактерий. Гипотеза отодвигает эволюционное положение LUCA(S) к истокам возникновения клетки, чему не противоречат и гипотетические условия среды (см. главу «Возникновение клетки»).
Генетика LUCA
Существует две теории о геноме LUCA [18].
Первая говорит нам о том, что у эволюционно ранних прокариотов был смешанный геном из ДНК и РНК, которые слаженно работали вместе, а с течением эволюции разные группы организмов оставили что-то одно: либо РНК, либо ДНК.
Второй подход подразумевает, что генетическая информация у LUCA хранилась в РНК-молекулах, а ДНК появлялась у каждой группы независимо. Вторая теория выглядит минималистичней, и к ней склоняется и Уильям Мартин (см. ниже).
О генетике «Луки» на «Биомолекуле» уже писали [28]. Но все-таки напомним, о чем идет речь.
Точного подтверждения существования LUCA в виде секвенированного генома или каких-то окаменелостей, не существует, но его генетическая информация содержится в любом ныне живущем существе (рис. 6).
Для решения проблемы определения состава генома LUCA нужно установить:
- Общие гены для доменов бактерий и архей.
- Какие гены появились из-за горизонтального переноса.
- Какие гены прямо наследованы от LUCA[24].
Затем для генов бактерий и архей можно построить филогенетическое дерево. И если мы учтем все возможные потери и приобретения генов за время эволюции, то есть выясним историю каждого отдельно взятого гена, то свободно проследим путь прямиком до LUCA. При этом ограничение размера генома с учетом гипотетического местообитания LUCA, условий среды и т.п. сильно упрощает задачу [24], [34].
Профессор Дюссельдорфского университета Уильям Мартин на протяжении последних 20 лет собирал огромный генетический банк (шесть млн генов), на основе которого немецкие исследователи выявили 355 необходимых для выживания генов — так называемый «минимальный геном» (гипотетический геном LUCA) [35], [36]. Для примера, кишечная палочка имеет
5 тысяч генов, а человек
25 тысяч. Разумеется, у LUCA, скорее всего, генов было больше, чем 355, но гены «минимального генома» — основные, то, без чего клетка бы не выжила. Впоследствии, при изменении условий обитания у потомков LUCA многие его гены могли редуцироваться за ненадобностью, поэтому говорить о них можно только на основе местообитания LUCA, расширяя тем самым его «минимальный геном».
И еще немного о LUCA
До сих пор сложно говорить об эволюционном положении общего древнейшего предка. Был ли у него ДНК-геном? Какие приспособления давали ему возможность выжить в таких экстремальных условиях? Что двигало клеточную эволюцию? На многие вопросы еще не даны ответы, но точно можно сказать одно: LUCA — связующее звено между «миром прогенотов» и современностью, необходимое для понимания общей картины эволюции в целом.
Последующие преобразования LUCA привели к возникновению организмов, которые сейчас мы можем разделить на три домена жизни. LUCA является своеобразным стартом активного развития и дифференцировки организмов. Чем дальше, тем сложнее найти начало. Именно эта гипотетическая модель дает нам понять, как двигалась эволюция, и найти связь между совершенно разными на первый взгляд существами. Освоение фотосинтеза, расширение ареала обитания, метаморфозы мембраны [31] — все это длилось миллионы и миллиарды лет, чтобы дать начало всем существам, с которыми у нас ассоциируется понятие «жизнь».
Заключение
На ранних эволюционных стадиях мы можем видеть разительное отличие общего устройства и функционала некоторых структур в сравнении с современными. РНК-молекулы, выполнявшие все функции организма, и которые сами, по сути, были целыми организмами на первых стадиях, с ходом эволюции кардинально меняют свое назначение. Раньше РНК полностью заменяла и ДНК, и ферменты, поддерживала жизнь всего организма на основе своего огромного функционала. Однако время идет, жизнь склонна усложняться. Появляется клеточная мембрана, а значит, вскоре появятся и органоиды, и вот уже оказывается, что теперь нет времени на долгий катализ рибозимами, и необходимого срока хранения генетической информации РНК предоставить уже не может в связи с интенсивным увеличением генома. И вот организм вынужден образовывать новые структуры, новые органеллы, прибегать к помощи симбионтов. Таким образом, всего через пару миллиардов лет мы можем лицезреть эукариот, в основе эволюции которых лежит одна лишь макромолекула.
С течением времени и развитием технологий изучение ранних стадий эволюции становится проще, но все так же остается одной из сложнейших задач науки. В последние годы все больше старых гипотез доказывается или опровергается на новой научной базе. Столетие назад никто и подумать не мог об орбитальных экспериментах и космических исследованиях, но человечество и это делает возможным. Мы устанавливаем родство на основе генетики, ищем древнейших предков с помощью молекулярной биологии и пытаемся узнать непостижимое — тайну происхождения жизни.
Источник