Как складывать дроби способом бабочки

Сложение дробей: теория и практика

О чем эта статья:

Понятие дроби

Дробь — одна из форм представления числа в математике. Это запись, в которой a и b являются числами или выражениями. Существует два формата записи:

  • обыкновенный вид — 1/2 или a/b,
  • десятичный вид — 0,5.

Над чертой принято писать делимое, которое является числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между ними означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел, например, 5/9 или (1,5 — 0,2)/15.
  2. Алгебраические — состоят из переменных, например, (x + y)/(x — y). В этом случае значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 3/7 и 31/45.

Неправильной — ту, у которой числитель больше знаменателя или равен ему. Например, 21/4. Такое число является смешанным и читается, как пять целых одна четвертая, а записывается — 5 1\4.

Основные свойства дробей

1. Дробь не имеет значения, при условии, если делитель равен нулю.

2. Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

3. Равными называются такие a/b и c/d, если:

4. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Как плюсовать дроби

Сложение — это арифметическое действие, в результате которого получается новое число. Оно содержит в себе сумму заданных чисел.

Свойства сложения

  • От перестановки мест слагаемых сумма не меняется: a + b = b + a.
  • Чтобы к сумме двух чисел прибавить третье нужно к первому числу прибавить сумму второго и третьего числа: (a + b) + c = a + (b + c).
  • Если к числу прибавить ноль, получится само число: a + 0 = 0 + a = a
  • При сложении числа можно переставлять и объединять в группы, результат от этого не изменится.

Давайте рассмотрим несколько вариантов сложения обыкновенных дробей.

Сложение дробей с одинаковыми знаменателями

Чтобы получить результат суммы двух дробей с равными знаменателями, нужно сложить числители исходных дробей, а знаменатель оставить прежним.

Не забудьте проверить, можно ли сократить дробь.

Сложение дробей с разными знаменателями

Как складывать дроби с разными знаменателями — для этого нужно найти наименьший общий знаменатель (далее — НОЗ), а затем воспользоваться предыдущим правилом. Вот, что делать:

Читайте также:  Основной способ передачи владения

1. Найдем наименьшее общее кратное (далее — НОК) для определения единого делителя.

Для этого записываем в столбик числа, которые в сумме дают значения делителей. Далее перемножаем полученное и получаем НОК.

НОК (15, 18) = 3 * 2 * 3 * 5 = 90

2. Найдем дополнительные множители для каждой дроби. Для этого НОК делим на каждый знаменатель:

Полученные числа записываем справа сверху над числителем.

3. Воспользуемся одним из основных свойств дробей: перемножим делимое и делитель на дополнительный множитель. После умножения делитель должен быть равен наименьшему общему кратному, которое мы ранее высчитывали. Затем можно перейти к сложению.

4. Проверим полученный результат:

  • если делимое больше делителя, нужно преобразовать в смешанное число;
  • если есть что сократить, нужно выполнить сокращение.

Еще раз ход решения одной строкой:

Сложение смешанных чисел

Сложение смешанных чисел можно привести к отдельному сложению их целых частей и дробных частей. Для этого нужно действовать поэтапно:

1. Сложить целые части.

2. Сложить дробные части.

Если знаменатели разные, воспользуемся знаниями из предыдущего примера и приведем к общему.

3. Суммируем полученные результаты.

Если при сложении дробных частей получилась неправильная дробь, нужно выделить ее целую часть и прибавить к полученной ранее целой части.

Если урок в самом разгаре и посчитать нужно быстро — можно воспользоваться онлайн-калькулятором. Вот несколько подходящих:

Прибавление и вычитание дробей — смежные темы: принципы и закономерности очень похожи. Чтобы закрепить знания, нужно решать примеры сложения дробей, как можно чаще.

Источник

Сложение дробей

При сложении дробей могут встретиться разные случаи.

Сложение дробей с одинаковыми знаменателями

Такой случай наиболее простой. При сложении дробей с равными знаменателями складывают числители, а знаменатель оставляют тот же.

C помощью букв это правило сложения можно записать так:

Записывая ответ, проверьте нельзя ли полученную дробь сократить.

Сложение дробей с разными знаменателями

Чтобы сложить дроби с разными знаменателями нужно воспользоваться следующими правилами.

  1. Привести данные дроби к наименьшему общему знаменателю (НОЗ). Для этого найти наименьшее общее кратное знаменателей.

Пример. Сложить дроби.

Как найти общий знаменатель

Находим НОК (15, 18) .

НОК (15, 18) = 3 · 2 · 3 · 5 = 90

    Найти дополнительные множители для каждой дроби. Для этого наименьший общий знаменатель (НОК из пункта 1) делим по очереди на знаменатель каждой дроби.

Полученные числа и будут дополнительными множителями для каждой из дробей. Множители записываем над числителем дроби справа сверху.

90 : 15 = 6 — дополнительный множитель для дроби

Читайте также:  Правил продажи товаров дистанционным способом 612
3
15

.

90 : 18 = 5 — дополнительный множитель для дроби

4
18

.

Числитель и знаменатель каждой дроби умножаем на свой дополнительный множитель, пользуясь основным свойством дроби.

После умножения в знаменателях обеих дробей должен получиться наименьший общий знаменатель. Затем складываем дроби как дроби с одинаковыми знаменателями.
Проверяем полученную дробь.

    Eсли в результате получилась неправильная дробь, результат записываем в виде смешанного числа. Проверим нашу дробь.

Источник

Математика. 6 класс

Конспект урока

Перечень рассматриваемых вопросов:

  • правила сложения рациональных чисел с одинаковыми знаками, разными знаками;
  • свойства сложения рациональных чисел, свойство нуля при сложении.

Сумма дробей с одинаковыми положительными знаменателями есть дробь с тем же знаменателем и суммой их числителей.

Чтобы сложить две дроби с разными знаменателями, необходимо сначала привести их к общему положительному знаменателю, а потом сложить числители получившихся дробей.

Сумма противоположных дробей равна нулю.

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.
  1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Продолжаем изучать тему «Рациональные числа». Сегодня узнаем правила, с помощью которых мы будем складывать дроби любого знака.

Сумма дробей с одинаковыми положительными знаменателями есть дробь с тем же знаменателем и суммой их числителей.

Правила сложения рациональных чисел, записанных в виде дробей.

  1. Если у дробей общий знаменатель, записываем его в знаменатель результата.
  2. Числители складываем по правилам сложения целых чисел и записываем в числитель результата.

Если требуется, результат сокращаем и преобразовываем в смешанную дробь.

Выполните сложение рациональных чисел, записанных в виде дробей с одинаковыми знаменателями.

Так как знаменатели у дробей одинаковые, записываем знаменатель тот же. Числители складываем по правилу сложения целых чисел с разными знаками. Результат сокращаем на два.

Выполните сложение рациональных чисел, записанных в виде дробей с одинаковыми знаменателями.

Так как знаменатели у дробей одинаковые, записываем знаменатель тот же. Числители складываем по правилу сложения целых отрицательных чисел.

Сложение рациональных чисел, записанных в виде дробей с разными знаменателями.

Чтобы сложить две дроби с разными знаменателями необходимо сначала привести их к общему положительному знаменателю, а потом сложить их числители.

Читайте также:  Легкий способ заплести 2 колоска

Алгоритм действия при сложении рациональных чисел, записанных в виде дробей с разными знаменателями:

найти общий положительный знаменатель;

найти сумму дробей по правилам сложения рациональных чисел, записанных в виде дробей с одинаковыми знаменателями.

Допустим, у нас есть две дроби с разными знаменателями. Необходимо, чтобы знаменатели стали одинаковыми. Используем основное свойство дроби.

Дробь не изменится, если её числитель и знаменатель умножить на одно и то же число.

Значит, если правильно подобрать множители, то знаменатели уравняются. Этот процесс называется приведением к общему знаменателю. А числа, «выравнивающие» знаменатели, называются дополнительными множителями.

Рассмотрим способы нахождения чисел, при умножении на которые знаменатели дробей станут равными.

Самый простой способ: умножаем первую дробь на знаменатель второй дроби, вторую — на знаменатель первой дроби. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей.

При этом способе нахождения общего знаменателя могут получиться большие числа.

Этот способ используется в случае, если знаменатели дробей – взаимно простые числа.

Метод общих делителей

Этот приём помогает сократить вычисления.

Метод заключается в следующем:

если больший знаменатель делится на меньший, то число, полученное в результате такого деления, будет дополнительным множителем для дроби с меньшим знаменателем; дробь с большим знаменателем остаётся прежней.

Метод наименьшего общего кратного

Наименьший общий положительный знаменатель – это наименьшее положительное число кратное знаменателям данных дробей.

Алгоритм приведения дробей к наименьшему общему положительному знаменателю:

  1. разложить на простые множители знаменатели дробей;
  2. найти наименьшее общее кратное (НОК) для знаменателей данных дробей;
  3. Привести дроби к общему положительному знаменателю, умножив числитель и знаменатель каждой дроби на соответствующие дробям дополнительные множители.

Найдём сумму дробей

ко второй дроби

Сложение противоположных рациональных чисел

Правило сложения противоположных рациональных чисел:

результатом сложения противоположных рациональных чисел будет ноль.

Выполним сложение дробей.

Найдём, сколько Кощей израсходовал сам за второй век.

Дроби с разными знаменателями. Общий знаменатель 10, тогда дополнительный множитель к первой дроби 2. Перемножим и получим:

Перемножим и получим:

Общий знаменатель 8. Дополнительный множитель к первой дроби 4.

Разбор заданий тренировочного модуля

№ 1. Разместите нужные подписи под изображениями.

Какие действия изображены?

сложение дробей с нулём

сложение дробей с разными знаменателями

сложение дробей с одинаковыми знаменателями

Для выполнения задания обратимся к теоретическому материалу урока.

№ 2. Вставьте в текст нужные слова.

Сумма … дробей равна нулю.

Варианты слов для вставки:

положительных и отрицательных

Для выполнения задания обратимся к теоретическому материалу урока.

Сумма противоположных дробей равна нулю.

Источник

Оцените статью
Разные способы