Как решить уравнение способом выделения квадрата двучлена

Выделение квадрата двучлена в решении квадратных уравнений

Квадратным уравнением называют уравнение вида a*x^2 +b*x+c=0, где a,b,c — некоторые произвольные вещественные (действительные) числа, а x – переменная. Причем число а не равно 0. Числа a,b,c называются коэффициентами. Число а – называется старшим коэффициентом, число b коэффициентом при х, а число с называют свободным членом.

Решение квадратных уравнений выделением квадрата двучлена

Рассмотрим способ решения квадратных уравнений выделением квадрата двучлена (в некоторых источниках, данный метод называется метод выделения полного квадрата.) Но для начала разберемся в терминах. Решить квадратное уравнение — это означает найти все его корни либо же установить тот факт, что квадратное уравнение корней не имеет.

Корнем квадратного уравнения a*x^2 +b*x+c=0 называют любое значение переменной х, такое, что квадратный трехчлен a*x^2 +b*x+c обращается в нуль. Иногда такого значение х называют корнем квадратного трехчлена.

Иначе говоря корень квадратного уравнения a*x^2 +b*x+c=0 – это значение х, подстановка которого в уравнение, обращает его в верное равенство 0=0. В общем случае, квадратное уравнение a*x^2 +b*x+c=0 может иметь два корня. Но возможно и такое, что квадратное уравнение имеет один корень или не имеет вообще действительных корней.

Алгоритм решения

Теперь переходим непосредственно к рассмотрению способа решения квадратных уравнений выделением квадрата двучлена. В этом способе мы будем активно использовать следующие формулы сокращенного умножения:

Будем рассматривать этот способ на приведенных квадратных уравнениях:

Решить уравнение x^2+10*x+25=0.

Видим, что в левой части многочлен можно представить в следующем виде

Заметим, что это полученное выражение, воспользовавшись формулами сокращенного умножения, можно представить как квадрат суммы двух выражений.

Тогда исходное выражение преобразуется к следующему виду:

Решить такое уравнение не составляет труда.

Ответ: х=-5;

Решим следующее уравнение: x^2+2*x-3=0;

Преобразуем это уравнение:

В левой части уравнения стоит многочлен x^2+2*x, для того чтобы представить его в виде квадрата суммы нам необходимо чтобы там был еще один коэффицент равный 1. Добавим и вычтем из этого выражения 1, получим:

То, что в скобках можно представить в виде квадрата двучлена

Данное уравнение распадается на два случая либо x+1=2 , либо х+1=-2.

В первом случае получаем ответ х=1, а во втором, х=-3.

Ответ: х=1, х=-3.

В результате преобразований нам необходимо получить в левой части квадрат двучлена, а в правой части некоторое число. В правой части не должна содержаться переменная.

Источник

Решение квадратных уравнений с помощью выделения квадрата двучлена

Уравнениям вида , где а0, в школьном курсе математики придаётся большое значение. Анализируя работы учеников, можно прийти к выводу, что при решении квадратных уравнений учащиеся в 90% случаях используют формулу «дискриминанта», а на остальные 10% приходится графический способ, теорема Виета и с помощью разложения на множители. Многие ребята не знают другие приемы решения квадратных уравнений. Рассмотрим подробнее способы решения квадратных уравнений.

Читайте также:  Способы вторичной обработки информации

Решение квадратных уравнений с помощью выделения квадрата двучлена.

Рассмотрим на примере решение квадратного уравнения, в котором оба коэффициента при неизвестных и свободный член отличны от нуля. Такой способ решения квадратного уравнения называют выделением квадрата двучлена.

Рассмотрим уравнение

Разделив обе части этого уравнения на 7, получим равносильное ему приведенное квадратное уравнение . Выделим из трехчлена квадрат двучлена. Для этого разность представим в виде , прибавим к ней выражение и вычтем его. Получим .

Решая это уравнение получим два корня x=-, и x= 1.

Решение квадратных уравнений по формуле.

Умножим обе части уравнения

ах2 + bх + с = 0, а ≠ 0

на 4а и последовательно имеем:

4а2х2 + 4аbх + 4ас = 0,

((2ах)2 + 2ах • b + b2) — b2 + 4ac = 0,

(2ax + b)2 = b2 — 4ac,

2ax + b = ± √ b2 — 4ac,

2ax = — b ± √ b2 — 4ac,

Решение уравнений с использованием теоремы Виета. 4. СПОСОБ:

Как известно, приведенное квадратное уравнение имеет вид

Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если свободный член q приведенного уравнения (1) положителен (q 0), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p. Если р, то оба корня отрицательны, если р, то оба корня положительны.

б) Если свободный член q приведенного уравнения (1) отрицателен (q ), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p, или отрицателен, если p 0 .

Решение уравнений с использованием теоремы Виета (обратной) Справедлива теорема, обратная теореме Виета:

Если числа х1 и х2 таковы, что х1+х2 = — р, х1х2 = q, то х1 и х2 – корни квадратного уравнения х2 +рх + q = 0.

Эта теорема позволяет в ряде случаев находить корни квадратного уравнения без использования формулы корней.

Решение уравнений способом «переброски».

Рассмотрим квадратное уравнение ах2 + bх + с = 0, где а ≠ 0.

Умножая обе его части на а, получаем уравнениеа2х2 + аbх + ас = 0.

Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у2 + by + ас = 0,

равносильно данному. Его корни у1 и у2 найдем с помощью теоремы Виета.

Окончательно получаем х1 = у1/а и х1 = у2/а. При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Читайте также:  Определить внп двумя способами ввп чнп нд лд рлд личные сбережения чистый экспорт валовые инвестиции

Свойства коэффициентов квадратного уравнения.

А. Пусть дано квадратное уравнение ах2 + bх + с = 0, где а ≠ 0.

1) Если, а+ b + с = 0 (т. е. сумма коэффициентов равна нулю), то х1 = 1, х2 = с/а.

Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение

x2 + b/a • x + c/a = 0.

Согласно теореме Виета

По условию а – b + с = 0, откуда b = а + с. Таким образом,

x1 + x2 = — а + b/a= -1 – c/a,

т. е. х1 = -1 и х2 = c/a, что м требовалось доказать.

Б. Если второй коэффициент b = 2k – четное число, то формулу корней

В. Приведенное уравнение х2 + рх + q= 0

совпадает с уравнением общего вида, в котором а = 1, b = р и с = q. Поэтому для приведенного квадратного уравнения формула корней

Формулу (3) особенно удобно использовать, когда р — четное число.

Графическое решение квадратного уравнения.

Если в уравнении х2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х2 = — px — q.

График первой зависимости — парабола, проходящая через начало координат. График второй зависимости – прямая. Возможны следующие случаи:

— прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

— прямая и парабола могут касаться (одна общая точка), т. е. уравнение имеет одно решение;

— прямая и парабола не имеют общих точек, т. е. квадратное уравнение не имеет корней.

Решение квадратных уравнений с помощью циркуля и линейки.

рафический способ решения квадратных уравнений с помощью параболы неудобен. Если строить параболу по точкам, то требуется много времени, и при этом степень точности получаемых результатов невелика.

Существует следующий способ нахождения корней квадратного уравнения ах2 + bх + с = 0с помощью циркуля и линейки

Допустим, что искомая окружность пересекает ось абсцисс в точках В(х1; 0 ) и D (х2; 0),где х1 и х2 — корни уравнения ах2 + bх + с = 0, и проходит через точки А(0; 1) и С(0; c/a) на оси ординат. Тогда по теореме о секущих имеем OB • OD = OA • OC, откуда OC = OB • OD/ OA= х1х2/ 1 = c/a.

ентр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD, поэтому

1) построим точки S(-b/2а; (а+с)/2а) (центр окружности) и A(0; 1);

2) проведем окружность с радиусом SA;

3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая.

1) Радиус окружности больше ординаты центра (AS SK, или R a + c/2a), окружность пересекает ось Ох в двух точках (рис. 6,а) В(х1; 0) и D(х2; 0), где х1 и х2 — корни квадратного уравнения ах2 + bх + с = 0.

Читайте также:  Способ борьбы с землеройками

) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох (рис. 6,б) в точке В(х1; 0), где х1 — корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра

окружность не имеет общих точек с осью абсцисс (рис.6,в), в этом случае уравнение не имеет решения.

Решение квадратных уравнений с помощью номограммы.

Это старый и незаслуженно забыты способ решения квадратных уравнений, помещенный на с.83 (см. Четырехзначные математические таблицы. — М., Просвещение, 1990).

Таблица XXII. Номограмма для решения уравнения z2 + pz + q = 0. Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициен-

там определить корни уравнения.

Криволинейная шкала номограммы построена

Полагая ОС = р, ED = q, ОЕ = а (все в см.), из

подобия треугольников САН и CDF получим пропорцию

откуда после подстановок и упрощений вытекает уравнение

z2 + pz + q = 0,причем буква z означает метку любой точки криволинейной шкалы.

Способ решения квадратных уравнений по теореме Безу.

При делении P(х) на х — в остатке может получиться лишь некоторое число r (если r = 0, то деление выполняется без остатка):P(x) = (x — ) Q (x) + r. (1)

Чтобы найти значение r, положим в тождестве (1) х = . При этом двучлен х — обращается в нуль, получаем, что P () = r.

Итак, доказано утверждение, называемое теоремой Безу.

Теорема 1 (Безу). Остаток от деления многочлена P(x) на двучлен х — равен P() (т. е. значению P(x) при х = ).

Если число является корнем многочлена P(x), то этот многочлен делится на х — без остатка.

Разделим р(х) на (х-1)

х-1=0; х=1, или х-3=0, х=3; Ответ: х1=2, х2=3.

Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств.

Однако, значение квадратных уравнений заключается не только в изяществе и краткости решения задач, хотя и это весьма существенно. Не менее важно и то, что в результате применения квадратных уравнений при решении задач не редко обнаруживаются новые детали, удается сделать интересные обобщения и внести уточнения, которые подсказываются анализом полученных формул и соотношений.

1. Четырехзначные математические таблицы для средней школы. Изд. 57-е. — М., Просвещение, 1990. С. 83.

2. Квадратичные функции, уравнения и неравенства. Пособие для учителя. — М., Просвещение, 1972.

3. Решение квадратного уравнения с помощью циркуля и линейки. — М., Квант, № 4/72. С. 34.

4. Сборник задач по алгебре и элементарным функциям. Пособие для учителя. Изд. 2-е. — М., Просвещение, 1970.

Источник

Оцените статью
Разные способы