- Методы решения систем уравнений с двумя переменными
- п.1. Метод подстановки
- п.2. Метод сложения
- п.3. Метод замены переменных
- п.4. Графический метод
- п.5. Примеры
- Замена переменных в уравнениях (ЕГЭ 2022)
- Замена переменных — коротко о главном
- Степенная замена \( \displaystyle y=<
^>\) - Степенная замена в общем виде
- Дробно-рациональная замена
- Дробно-рациональная замена в общем виде
- Замена многочлена
- Замена многочлена в общем виде
- Подведем итоги
- Важные советы при введении новой переменной
Методы решения систем уравнений с двумя переменными
п.1. Метод подстановки
Вариант 1
Шаг 1. Из одного уравнения выразить y через x: y(x).
Шаг 2. Подставить полученное выражение во второе уравнение и найти x.
Шаг 3. Подставить найденный x в y(x) и найти y.
Шаг 4. Записать полученные пары решений. Работа завершена.
Вариант 2
Шаг 1. Из одного уравнения выразить x через y: x(y).
Шаг 2. Подставить полученное выражение во второе уравнение и найти y.
Шаг 3. Подставить найденный y в x(y) и найти x.
Шаг 4. Записать полученные пары решений. Работа завершена.
п.2. Метод сложения
п.3. Метод замены переменных
Иногда удобно ввести новые переменные и решить систему для них.
А затем, вернуться к исходным переменным и найти их значения.
п.4. Графический метод
Графический метод подробно рассмотрен в §15 данного справочника.
п.5. Примеры
Пример 1. Решите систему уравнений:
а) \( \left\< \begin
Решаем методом подстановки: \( \left\< \begin
Для нижнего уравнения: \( \mathrm
Подставляем в верхнее уравнение: \( \mathrm
б) \( \left\< \begin
Замена переменных: \( \left\< \begin
Выразим (x 2 + y 2 ) через a и b:
x 2 + y 2 = (x 2 + y 2 + 2xy) – 2xy = (x + y) 2 – 2xy = a 2 – 2b
Подставляем: \( \left\< \begin
Решаем нижнее уравнение: 2b 2 – 9b + 10 = 0 $$ \mathrm< D=9^2-4\cdot 2\cdot 10=1,\ \ b=\frac<9\pm 1><4>> = \left[\begin
Источник
Замена переменных в уравнениях (ЕГЭ 2022)
Метод замены переменных… Что это за зверь?
Это хитрый способ сначала сделать сложное уравнение простым (с помощью замены переменных) и потом быстро с ним разделаться.
Есть три способа замены переменной.
Читай эту статью — ты все поймешь!
Замена переменных — коротко о главном
Определение:
Замена переменных – метод решения сложных уравнений и неравенств, который позволяет упростить исходное выражение и привести его к стандартному виду.
Замена переменных – это введение нового неизвестного, относительно которого уравнение или неравенство имеет более простой вид.
Виды замены переменной:
Степенная замена: за \( \displaystyle t\) принимается какое-то неизвестное, возведенное в степень: \( \displaystyle t=<
Дробно-рациональная замена: за \( \displaystyle t\) принимается какое-либо отношение, содержащее неизвестную переменную: \( \displaystyle t=\frac<<
_ _ \) – многочлены степеней n и m, соответственно. Замена многочлена: за \( \displaystyle t\) принимается целое выражение, содержащее неизвестное: \( \displaystyle t=< _ _ _ \) – многочлен степени \( \displaystyle n\). Обратная замена: После решения упрощенного уравнения/неравенства, необходимо произвести обратную замену. Решение примера №1 Допустим, у нас есть выражение: \( \displaystyle < Подумай, к какому виду мы можем его привести, чтобы при расчетах легко найти корни? Правильно, данное уравнение необходимо привести к квадратному виду. Введем новую переменную \( \displaystyle t=< Метод замены переменной подразумевает, чтобы старой переменной \( \displaystyle x\) не оставалось – в выражении должна остаться только одна переменная – \( \displaystyle t\). Наше выражение приобретет вид: \( \displaystyle < \( \displaystyle \text Нашли ли мы корни исходного уравнения? Правильно, нет. На этом шаге не следует забывать, что нам необходимо найти значения переменной \( \displaystyle x\), а мы нашли только \( \displaystyle t\). Следовательно, нам необходимо вернуться к исходному выражению, то есть сделать обратную замену — вместо \( \displaystyle t\) ставим \( \displaystyle < Решаем два новых простых уравнения, не забывая область допустимых значений! При \( \displaystyle < \( \displaystyle < А что у нас будет при \( \displaystyle < Правильно. Решений данного уравнения нет, так как квадрат любого числа – число положительное, а в нашем случае – отрицательное, соответственно, при \( \displaystyle < В ответ следует записать необходимые нам корни, то есть \( \displaystyle x\), которые существуют: Ответ: \( \displaystyle 3\);\( \displaystyle -3\) Точно таким же образом необходимо действовать при решении неравенств. Выполняя замену переменных, необходимо помнить два простых правила: Решение примера №2 Попробуй самостоятельно применить метод замены переменной в уравнении \( \displaystyle 3< Подумай, к какому виду мы можем его привести, чтобы при расчетах легко найти корни? Проверь свое решение: Введем новую переменную \( \displaystyle t=< Наше выражение приобретет вид: \( \displaystyle 3< Возвращаемся к исходному выражению, то есть делаем обратную замену: вместо \( \displaystyle t\) ставим \( \displaystyle < Оба значения \( \displaystyle < При \( \displaystyle < Ответ: \( \displaystyle \sqrt[3]<2>;\sqrt[3]<\frac<1><3>>\) Например, с помощью замены \( \displaystyle t=< В неравенствах все аналогично. Например, в неравенстве \( \displaystyle a< Дробно-рациональная замена – \( \displaystyle y=\frac<< _ \) многочлены степеней n и m соответственно. При этом необходимо помнить, что область допустимых значений (ОДЗ) данного уравнения \( \displaystyle < Решение примера №3 Допустим, у нас есть уравнение: Так как на ноль делить нельзя, то в данном случае ОДЗ будет: \( \displaystyle x\ne 0\) Введем новую переменную \( \displaystyle t\). Пусть \( \displaystyle t=x+\frac<3> Сравни, что дает возведение \( \displaystyle t\) в квадрат, с первой сгруппированной скобкой в нашем примере. Что ты видишь? Правильно. Разница между тем, что у нас в примере, и тем, что дает нам возведение в квадрат, заключается в удвоенном произведении слагаемых. Соответственно, его и следует вычесть, переписывая наш пример с переменной \( \displaystyle t\). \( \displaystyle 2 В итоге мы получаем следующее выражение: \( \displaystyle < Решаем получившееся уравнение: Как мы помним \( t\), не является конечным решением уравнения. Возвращаемся к изначальной переменной: Приводя к общему знаменателю \( \displaystyle x\), мы приходим к совокупности 2-x квадратных уравнений: Решим первое квадратное уравнение: На этой стадии не забываем про ОДЗ. Мы должны посмотреть, удовлетворяют ли найденные корни области допустимых значений? Если какой-то корень не удовлетворяет ОДЗ – он не включается в конечное решение уравнения. Решим второе квадратное уравнение: Снова смотрим, удовлетворяют ли полученные корни ОДЗ? Далее записываем конечный ответ. Ответ: \( \displaystyle \frac<5+\sqrt<13>><2>;\text< >\!\! У тебя получился такой же? Попробуй решить все с начала до конца самостоятельно. Решение пример №4 Какой ответ у тебя получился? У меня \( \displaystyle 1\) и \( \displaystyle 3\). Сравним ход решения: Пусть \( \displaystyle t=\frac<1><<<\left( Приведем слагаемые к общему знаменателю: Не забываем про ОДЗ — \( \displaystyle t\ne 0\). Решаем квадратное уравнение: Как ты помнишь, \( \displaystyle t\) не является конечным решением уравнения. Возвращаемся к изначальной переменной: Решим первое уравнение: Решением первого уравнения являются корни \( \displaystyle 1\) и \( \displaystyle 3\). Решим второе уравнение: Решения не существует. Подумай, почему? Правильно! \( \displaystyle \frac<1><<<\left( Ответ: \( \displaystyle 1\); \( \displaystyle 3\) \( \displaystyle < _ Например, при решении возвратных уравнений, то есть уравнений вида обычно используется замена \( \displaystyle t=x+\frac<1> Сейчас покажу, как это работает. Легко проверить, что \( \displaystyle x=0\) не является корнем этого уравнения: ведь если подставить \( \displaystyle x=0\) в уравнение, получим \( \displaystyle a=0\), что противоречит условию. Разделим уравнение на \( \displaystyle < Теперь делаем замену: \( \displaystyle t=x+\frac<1> Прелесть ее в том, что при возведении в квадрат в удвоенном произведении слагаемых сокращается x: Вернемся к нашему уравнению: \( \displaystyle \begin Теперь достаточно решить квадратное уравнение и сделать обратную замену. Замена многочлена \( \displaystyle y=< _ _ Здесь \( \displaystyle < _ \) — многочлена степени \( \displaystyle n\), например, выражение \( \displaystyle 12< Решение примера №4 Применим метод замены переменной. Как ты думаешь, что нужно принять за \( \displaystyle t\)? Уравнение приобретает вид: Производим обратную замену переменных: Решим первое уравнение: Решим второе уравнение: \( \displaystyle << Решил? Теперь проверим с тобой основные моменты. За \( \displaystyle t\) нужно взять \( \displaystyle 2<< Мы получаем выражение: \( \displaystyle \text Решая квадратное уравнение, мы получаем, что \( t\) имеет два корня: \( \displaystyle -2\) и \( \displaystyle 1\). Далее делаем обратную замену и решаем оба квадратных уравнения. Решением первого квадратного уравнения являются числа \( \displaystyle 1\) и \( \displaystyle 3,5\) Решением второго квадратного уравнения — числа \( \displaystyle 0,5\) и \( \displaystyle 4\). Ответ: \( \displaystyle 0,5\); \( \displaystyle 1\); \( \displaystyle 3,5\); \( \displaystyle 4\) \( \displaystyle t=< _ _ Здесь \( \displaystyle < _ (например, выражение \( \displaystyle 4< _<4>>\left( x \right)\)). Чаще всего используется замена квадратного трехчлена: \( \displaystyle t=a< Метод замены переменной имеет \( \displaystyle 3\) основных типа замен переменных в уравнениях и неравенствах: Степенная замена, когда за \( \displaystyle t\) мы принимаем какое-то неизвестное, возведенное в степень. Замена многочлена, когда за \( \displaystyle t\) мы принимаем целое выражение, содержащее неизвестное. Дробно-рациональная замена, когда за \( \displaystyle t\) мы принимаем какое-либо отношение, содержащее неизвестную переменную. Разбор 3 примеров на замену переменных Пример 7. \( \displaystyle \left( << Решение примера №6 Пусть \( \displaystyle \text Так как \( \displaystyle \text Ответ: \( \displaystyle -2;\text< >1\) Решение примера №7 Пусть \( \displaystyle \text \( \displaystyle <<\text Решение: Это дробно-рациональное уравнение (повтори «Рациональные уравнения»), но решать его обычным методом (приведение к общему знаменателю) неудобно, так как мы получим уравнение \( \displaystyle 6\) степени, поэтому применяется замена переменных. Все станет намного проще после замены: \( \displaystyle t=< Теперь делаем обратную замену: Ответ: \( \displaystyle \sqrt[3]<3>\); \( \displaystyle \sqrt[3]<4>\). Решение примера 10 (замена многочлена) Решите уравнение \( \displaystyle \left( < Решение: И опять используется замена переменных \( \displaystyle t=< \( \displaystyle t\cdot \left( t+1 \right)=12\text< >\Rightarrow \text< >< Корни этого квадратного уравнения: \( \displaystyle t=-4\) и \( \displaystyle t=3\). Имеем два случая. Сделаем обратную замену для каждого из них: \( \displaystyle t=-4\text< >\Rightarrow \text< >< \( \displaystyle D=<<5>^<2>>-4\cdot 13=-17 \( \displaystyle x\in \left[ -\frac<7><2>;-\frac<1> <2>\right]\cup \left( 0;+\infty \right)\) \( \displaystyle y 0\) при всех \( \displaystyle x\), так как \( \displaystyle D=64-4\cdot 4\cdot 7=-48 0\) при всех \( \displaystyle x\), так как \( \displaystyle D=81-4\cdot 4\cdot 7=-31 0\) Источник_
_
Степенная замена \( \displaystyle y=<
Степенная замена в общем виде
Дробно-рациональная замена
_
_
Дробно-рациональная замена в общем виде
_
Замена многочлена
Замена многочлена в общем виде
Подведем итоги
Важные советы при введении новой переменной