Рекуррентные соотношения и уравнения
В этом разделе вы найдете бесплатные примеры решений рекуррентных соотношений методом характеристического уравнения и подбора частного решения по правой части. Также приведены краткие алгоритмы решения для двух методов и пример их использования для последовательности Фибоначчи.
Как решать рекуррентные соотношения?
Для решения рекуррентных соотношений применяют один из двух основных способов:
- Метод производящих функций
- Метод характеристического уравнения
В следующем разделе мы сравним, как выглядит процесс решения для одной и той же последовательности двумя методами.
Метод производящих функций
- Записать рекуррентное соотношение и начальные данные для него в следующем виде (если порядок соотношения равен $k$) $$a_ <0>= …, \\ a_ <1>= …, \\ a_
= …, \\ … \\ a_ = …, n\geqslant k$$ - Домножить каждую строчку на $z$ в соответствующей степени $z^
\cdot a_ $ и сложить все выражения для $n \ge 0$. В левой части получится сумма $\displaystyle\sum_ ^ <\infty>a_nz^n$ — это производящая функция, назовем ее $G(z)$. Правую часть преобразовать так, чтобы она превратилась в выражение, включающее $G(z)$. - Решить полученное уравнение относительно $G(z)$.
- Разложить $G(z)$ в степенной ряд, тогда коэффициент при $z_n$ будет искомым выражением для $a_n$.
Метод характеристических функций
Этот метод практически полностью аналогичен методу решения линейных неоднородных дифференциальных уравнений с постоянными коэффициентами, кратко алгоритм выглядит так:
- Записать соответствующее однородное рекуррентное уравнение (РУ): $$ p_
a_ + p_ a_ + . + p_n a_n =f \to \\ \to p_ a_ + p_ a_ + . + p_n a_n =0. $$ - Выписать для него характеристическое уравнение и найти его корни $\lambda_i$ $$ p_
\lambda^ + p_ \lambda^ + . + p_ \lambda + p_n =0. $$ - Выписать согласно полученным корням $\lambda_1, . \lambda_k$ общее решение однородного рекуррентного соотношения (подробнее теорию см. по ссылке [1] ниже). $$ C_1 \lambda_1^n +. +C_k \lambda_k^n \, \mbox < для случая различных простых корней>, $$ $$ C_1 \lambda_1^n + C_2 n\lambda_1^n +. +C_m n^m \lambda_1^n+. +C_k \lambda_k^n \mbox < для случая корня >\, \lambda_1 \, < кратности >\, m. $$
- Подобрать частное решение неоднородного рекуррентного соотношения по виду правой части (особенно удобно для правых частей вида $\mu^n*P(n)$, $P(n)$ — многочлен от $n$).
- Представить общее решение неоднородного РУ как сумму общего решения соответствующего однородного РУ и частного решения неоднородного РУ.
- Подставить начальные условия $a_0, a_1, . a_
$ и получить значения констант $C_1, . C_k$.
Решение для последовательности чисел Фибоначчи
Последовательность чисел Фибоначи — это последовательность, каждый элемент которой (кроме нулевого и первого) равен сумме двух предыдущих:
$$ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 , . $$
Числа Фибоначчи растут быстро: $f_<10>=55$, $f_<20>=6765$, а $f_<100>=354224848179261915075$.
Общая формула данной рекуррентной последовательности имеет вид6
Способ 1. Производящяя функция
Начинаем с второго шага алгоритма, домножаем на $z^n$:
$$\begin
Складываем все строчки:
На третьем шаге алгоритма приводим все суммы к замкнутому виду:
откуда выводим искомое выражение для производящей функции:
Теперь разложим ее в степенной ряд. Для этого сначала разложим знаменатель на множители. Найдем корни уравнения:
Чтобы разложить данные дроби в ряды, используем известное разложение для дроби:
Рассмотрим первую дробь и поделим в ней числитель и знаменатель на $z_1$:
Аналогично (но с делением на $z_2$) действуем со второй дробью:
Преобразуем данное выражение, используя то, что
$$1/z_1=-z_2, \quad 1/z_2 = -z_1, \quad z_1-z_2=\sqrt <5>$$ $$f_n=\frac<1><\sqrt<5>>\left( \biggl( \frac<1+\sqrt<5>> <2>\biggr)^n — \biggl( \frac<1-\sqrt<5>> <2>\biggr)^n \right). $$
Способ 2. Характеристическое уравнение
Запишем характеристический многочлен для $f_n=f_
Тогда общее решение однородного рекуррентного уравнения имеет вид:
Осталось найти значения произвольных постоянных $C_1, C_2$ из начальных условий $f_0=0, f_1=1$.
Решая систему, найдем
Итоговое выражение для последовательности чисел Фибоначчи:
Результаты обоих методов совпали, решение вторым методом оказалось проще и короче.
Примеры решений
Задача 1. Решить рекуррентное соотношение $f(n+2)=-6f(n+1)+7f(n)+n-3$ с начальными условиями $f(0)=2$ и $f(1)=4$, сделать проверку
Задача 2. Решить рекуррентное соотношение $f(n+2)=-2f(n+1)+3f(n)-3^n$ с начальными условиями $f(0)=1$, $f(1)=3$ и сделать проверку
Задача 3. 1. Решить рекуррентное соотношение $f(n+2) =-5f(n+1) -4f(n) + 3n^2$ с начальными условиями $f(0) = 2$, $f(1) = 3$.
2. Проверить, удовлетворяет ли найденное решение начальным условиям и обращает ли оно рекуррентное соотношение в справедливое тождество.
Задача 4. Найти последовательность $
Источник