Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Решение уравнений и неравенств с модулями.
Этот математический калькулятор онлайн поможет вам решить уравнение или неравенство с модулями. Программа для решения уравнений и неравенств с модулями не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> |x| или abs(x) — модуль x
Введите уравнение или неравенство с модулями
Решить уравнение или неравенство
Немного теории.
Уравнения и неравенства с модулями
В курсе алгебры основной школы могут встретится простейшие уравнения и неравенства с модулями. Для их решения можно применять геометрический метод, основанный на том, что \( |x-a| \) — это расстояние на числовой прямой между точками x и a: \( |x-a| = \rho (x;\; a) \). Например, для решения уравнения \( |x-3|=2 \) нужно найти на числовой прямой точки, удалённые от точки 3 на расстояние 2. Таких точек две: \( x_1=1 \) и \( x_2=5 \).
Решая неравенство \( |2x+7| 0 \), то уравнение \( |f(x)|=c \) равносильно совокупности уравнений: \( \left[\begin
2) Если \( c > 0 \), то неравенство \( |f(x)| c \) равносильно совокупности неравенств: \( \left[\begin
4) Если обе части неравенства \( f(x) 0. Значит, |2х – 4| = (2х – 4), |х + 3| = (х + 3). Таким образом, на рассматриваемом промежутке заданное уравнение принимает вид: (2х – 4) + (х + 3) = 8. Решив это уравнение, находим: х = 3. Это значение принадлежит рассматриваемому промежутку, а потому является корнем заданного уравнения.
Итак, \(x_1=-1, \; x_2=3 \).
Второй способ
Преобразуем уравнение к виду 2|x – 2| + |x + 3| = 8. Переведём эту аналитическую модель на геометрический язык: нам нужно найти на координатной прямой такие точки М(х), которые удовлетворяют условию \( 2\rho(x; \;2)+ \rho(x; \;-3) =8 \) или
MA + 2MB = 8
( здесь A = A(–3), B = B(2) ).
Интересующая нас точка М не может находиться левее точки А, поскольку в этом случае 2MB > 10 и, следовательно, равенство MA + 2MB = 8 выполняться не может.
Рассмотрим случай, когда точка \( M_1(x) \) лежит между А и В. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(2 – х) = 8,
откуда находим: x = –1.
Рассмотрим случай, когда точка \( M_2(x) \) лежит правее точки B. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(х – 2) = 8,
откуда находим: х = 3.
Ответ: –1; 3.
Пусть теперь требуется решить неравенство \( |f(x)| |f(x)| \). Отсюда сразу следует, что \( g(x) > 0 \). Воспользуемся тем, что при \( g(x) > 0 \) неравенство \( |f(x)| 0, \\ -g(x) 0 \\ f(x) -g(x) \end
Третий способ.
Воспользуемся тем, что при \( g(x) > 0 \) обе части неравенства \( |f(x)| 0 \\ (f(x))^2 0 \\ x^2 — 3x + 2 -(2x — x^2) \end
Решая эту систему, получаем:
\( \left\<\begin
\( \left\<\begin
\( \left\<\begin
Из последней системы находим: \( 0<,>5 g(x) \). Освободиться от знака модуля можно тремя способами.
Первый способ
Если \(f(x) \geqslant 0\), то \( |f(x)| = f(x) \) и заданное неравенство принимает вид \( f(x) > g(x) \).
Если \(f(x) g(x) \).
Таким образом, задача сводится к решению совокупности двух систем неравенств:
\( \left\<\begin
Второй способ.
Рассмотрим два случая: \( g(x) \geqslant 0, \; g(x) g(x) \) выполняется для всех x из области определения выражения f(x).
Если \( g(x) \geqslant 0 \), то воспользуемся тем, что согласно утверждению 3) в самом начале данной теории неравенство \( |f(x)| > g(x) \) равносильно совокупности неравенств \( f(x) g(x) \).
Таким образом, заданное неравенство сводится к совокупности трёх систем:
\( \left\<\begin
Третий способ.
Воспользуемся тем, что при \( g(x) \geqslant 0 \) неравенство \( |f(x)| > g(x) \) равносильно неравенству \( (|f(x)|)^2 > (g(x))^2 \). Это позволит свести неравенство \( |f(x)| > g(x) \) к совокупности систем:
\( \left\<\begin
ПРИМЕР 5. Решить неравенство \( |x^2 — 3x + 2| \geqslant 2x — x^2 \)
Первый способ
Задача сводится к решению совокупности двух систем неравенств:
\( \left\<\begin
\( \left[\begin
Таким образом, получаем совокупность неравенства и двух систем неравенств:
\( 2x — x^2 \leqslant 0; \) \( \left\<\begin
Решив неравенство \( 2x — x^2 \leqslant 0 \), получим: \( x \leqslant 0,\; x \geqslant 2 \)
Решив первую систему, получим: \( 0 0 \), то обе части заданного неравенства можно возвести в квадрат. Таким образом, получаем совокупность неравенства и системы неравенств:
\( 2x — x^2 \leqslant 0; \) \( \left\<\begin
Решив неравенство \( 2x — x^2 \leqslant 0 \), получим: \( x \leqslant 0,\; x \geqslant 2 \)
Решая систему, получаем последовательно:
\( \left\<\begin
Источник
Решение простых линейных уравнений
О чем эта статья:
Понятие уравнения
Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.
В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.
Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством.
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
- кубические
- уравнение четвёртой степени
- иррациональные и рациональные
- системы линейных алгебраических уравнений
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
- Перенесем 6x из левой части в правую. Знак меняем на противоположный, то есть минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Сократим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе.
А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе.
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на общий множитель, то есть 6.
Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены.
5х — 3х — 2х = — 12 — 1 + 15 — 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Найти неизвестную переменную.
Пример 4. Решить: 4(х + 2) = 6 — 7х.
- 4х + 8 = 6 — 7х
- 4х + 7х = 6 — 8
- 11х = −2
- х = −2 : 11
- х = — 0, 18
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 — 7х..
- 2х + 6 = 5 — 7х
- 2х + 6х = 5 — 7
- 8х = −2
- х = −2 : 8
- х = — 0,25
Источник