- Преобразование рациональных выражений: виды преобразований, примеры
- Определение и примеры рациональных выражений
- Основные виды преобразований рациональных выражений
- Представление в виде рациональной дроби
- Действия с рациональными числами: правила, примеры, решения
- Действие сложения рациональных чисел
- Сложение нуля с отличным от него рациональным числом
- Сложение противоположных рациональных чисел
- Сложение положительных рациональных чисел
- Сложение рациональных чисел с разными знаками
- Сложение отрицательных рациональных чисел
- Действие вычитания рациональных чисел
- Действие умножения рациональных чисел
- Умножение на нуль
- Умножение на единицу
- Умножение взаимообратных чисел
- Умножение положительных рациональных чисел
- Умножение рациональных чисел с разными знаками
- Умножение отрицательных рациональных чисел
- Деление рациональных чисел
Преобразование рациональных выражений: виды преобразований, примеры
Статья рассказывает о преобразовании рациональных выражений. Рассмотрим виды рациональных выражений, их преобразования, группировки, вынесения за скобки общего множителя. Научимся представлять дробные рациональные выражения в виде рациональных дробей.
Определение и примеры рациональных выражений
Выражения, которые составлены из чисел, переменных, скобок, степеней с действиями сложения, вычитания, умножения, деления с наличием черты дроби, называют рациональными выражениями.
Для примера имеем, что 5 , 2 3 · x — 5 , — 3 · a · b 3 — 1 c 2 + 4 a 2 + b 2 1 + a : ( 1 — b ) , ( x + 1 ) · ( y — 2 ) x 5 — 5 · x · y · 2 — 1 11 · x 3 .
То есть это такие выражения, которые не имеют деления на выражения с переменными. Изучение рациональных выражений начинается с 8 класса, где их называют дробными рациональными выражениями. Особое внимание уделяют дробям в числителе, которые преобразовывают с помощью правил преобразования.
Это позволяет переходить к преобразованию рациональных дробей произвольного вида. Такое выражение может быть рассмотрено как выражение с наличием рациональных дробей и целых выражений со знаками действий.
Основные виды преобразований рациональных выражений
Рациональные выражения используются для того, чтобы выполнять тождественные преобразования, группировки, приведение подобных, выполнение других действий с числами. Цель таких выражений – это упрощение.
Преобразовать рациональное выражение 3 · x x · y — 1 — 2 · x x · y — 1 .
Видно, что такое рациональное выражение – это разность 3 · x x · y — 1 и 2 · x x · y — 1 . Замечаем, что знаменатель у них идентичный. Это значит, что приведение подобных слагаемых примет вид
3 · x x · y — 1 — 2 · x x · y — 1 = x x · y — 1 · 3 — 2 = x x · y — 1
Ответ: 3 · x x · y — 1 — 2 · x x · y — 1 = x x · y — 1 .
Выполнить преобразование 2 · x · y 4 · ( — 4 ) · x 2 : ( 3 · x — x ) .
Первоначально выполняем действия в скобках 3 · x − x = 2 · x . Данное выражение представляем в виде 2 · x · y 4 · ( — 4 ) · x 2 : ( 3 · x — x ) = 2 · x · y 4 · ( — 4 ) · x 2 : 2 · x . Мы приходим к выражению, которое содержит действия с одной ступенью, то есть имеет сложение и вычитание.
Избавляемя от скобок при помощи применения свойства деления. Тогда получаем, что 2 · x · y 4 · ( — 4 ) · x 2 : 2 · x = 2 · x · y 4 · ( — 4 ) · x 2 : 2 : x .
Группируем числовые множители с переменной x , после этого можно выполнять действия со степенями. Получаем, что
2 · x · y 4 · ( — 4 ) · x 2 : 2 : x = ( 2 · ( — 4 ) : 2 ) · ( x · x 2 : x ) · y 4 = — 4 · x 2 · y 4
Ответ: 2 · x · y 4 · ( — 4 ) · x 2 : ( 3 · x — x ) = — 4 · x 2 · y 4 .
Преобразовать выражение вида x · ( x + 3 ) — ( 3 · x + 1 ) 1 2 · x · 4 + 2 .
Для начала преобразовываем числитель и знаменатель. Тогда получаем выражение вида ( x · ( x + 3 ) — ( 3 · x + 1 ) ) : 1 2 · x · 4 + 2 , причем действия в скобках делают в первую очередь. В числителе выполняются действия и группируются множители. После чего получаем выражение вида x · ( x + 3 ) — ( 3 · x + 1 ) 1 2 · x · 4 + 2 = x 2 + 3 · x — 3 · x — 1 1 2 · 4 · x + 2 = x 2 — 1 2 · x + 2 .
Преобразуем в числителе формулу разности квадратов, тогда получаем, что
x 2 — 1 2 · x + 2 = ( x — 1 ) · ( x + 1 ) 2 · ( x + 1 ) = x — 1 2
Ответ: x · ( x + 3 ) — ( 3 · x + 1 ) 1 2 · x · 4 + 2 = x — 1 2 .
Представление в виде рациональной дроби
Алгебраическая дробь чаще всего подвергается упрощению при решении. Каждое рациональное приводится к этому разными способами. Необходимо выполнить все необходимые действия с многочленами для того, чтобы рациональное выражение в итоге смогло дать рациональную дробь.
Представить в виде рациональной дроби a + 5 a · ( a — 3 ) — a 2 — 25 a + 3 · 1 a 2 + 5 · a .
Данное выражение можно представить в виде a 2 — 25 a + 3 · 1 a 2 + 5 · a . Умножение выполняется в первую очередь по правилам.
Следует начать с умножения, тогда получим, что
a 2 — 25 a + 3 · 1 a 2 + 5 · a = a — 5 · ( a + 5 ) a + 3 · 1 a · ( a + 5 ) = a — 5 · ( a + 5 ) · 1 ( a + 3 ) · a · ( a + 5 ) = a — 5 ( a + 3 ) · a
Производим представление полученного результата с исходное. Получим, что
a + 5 a · ( a — 3 ) — a 2 — 25 a + 3 · 1 a 2 + 5 · a = a + 5 a · a — 3 — a — 5 a + 3 · a
Теперь выполняем вычитание:
a + 5 a · a — 3 — a — 5 a + 3 · a = a + 5 · a + 3 a · ( a — 3 ) · ( a + 3 ) — ( a — 5 ) · ( a — 3 ) ( a + 3 ) · a · ( a — 3 ) = = a + 5 · a + 3 — ( a — 5 ) · ( a — 3 ) a · ( a — 3 ) · ( a + 3 ) = a 2 + 3 · a + 5 · a + 15 — ( a 2 — 3 · a — 5 · a + 15 ) a · ( a — 3 ) · ( a + 3 ) = = 16 · a a · ( a — 3 ) · ( a + 3 ) = 16 a — 3 · ( a + 3 ) = 16 a 2 — 9
После чего очевидно, что исходное выражение примет вид 16 a 2 — 9 .
Ответ: a + 5 a · ( a — 3 ) — a 2 — 25 a + 3 · 1 a 2 + 5 · a = 16 a 2 — 9 .
Представить x x + 1 + 1 2 · x — 1 1 + x в виде рациональной дроби.
Заданное выражение записывается как дробь, в числителе которой имеется x x + 1 + 1 , а в знаменателе 2 · x — 1 1 + x . Необходимо произвести преобразования x x + 1 + 1 . Для этого нужно выполнить сложение дроби и числа. Получаем, что x x + 1 + 1 = x x + 1 + 1 1 = x x + 1 + 1 · ( x + 1 ) 1 · ( x + 1 ) = x x + 1 + x + 1 x + 1 = x + x + 1 x + 1 = 2 · x + 1 x + 1
Следует, что x x + 1 + 1 2 · x — 1 1 + x = 2 · x + 1 x + 1 2 · x — 1 1 + x
Получившаяся дробь может быть записана как 2 · x + 1 x + 1 : 2 · x — 1 1 + x .
После деления придем к рациональной дроби вида
2 · x + 1 x + 1 : 2 · x — 1 1 + x = 2 · x + 1 x + 1 · 1 + x 2 · x — 1 = 2 · x + 1 · ( 1 + x ) ( x + 1 ) · ( 2 · x — 1 ) = 2 · x + 1 2 · x — 1
Можно решить это иначе.
Вместо деления на 2 · x — 1 1 + x производим умножение на обратную ей 1 + x 2 · x — 1 . Применим распределительное свойство и получаем, что
x x + 1 + 1 2 · x — 1 1 + x = x x + 1 + 1 : 2 · x — 1 1 + x = x x + 1 + 1 · 1 + x 2 · x — 1 = = x x + 1 · 1 + x 2 · x — 1 + 1 · 1 + x 2 · x — 1 = x · 1 + x ( x + 1 ) · 2 · x — 1 + 1 + x 2 · x — 1 = = x 2 · x — 1 + 1 + x 2 · x — 1 = x + 1 + x 2 · x — 1 = 2 · x + 1 2 · x — 1
Ответ: x x + 1 + 1 2 · x — 1 1 + x = 2 · x + 1 2 · x — 1 .
Источник
Действия с рациональными числами: правила, примеры, решения
Ниже рассмотрим правила основных математических действий над рациональными числами: сложение, вычитание, умножение и деление. Разберем теорию на практических примерах.
Действие сложения рациональных чисел
Рациональные числа содержат натуральные, тогда смысл действия сложения рациональных чисел сопоставим со смыслом сложения натуральных. Например, сумму рациональных чисел, записанную как 5 + 1 4 возможно описать следующим образом: к 5 целым предметам добавили четверть такого предмета, после чего полученное количество рассматривается совместно.
Сформулируем правила сложения рациональных чисел:
Сложение нуля с отличным от него рациональным числом
Прибавление нуля к любому числу дает то же число. Данное правило возможно записать в виде равенства: a + 0 = a (для любого рационального числа а). Используя переместительное свойство сложения, получим также верное равенство: 0 + a = a .
Пара простых примеров: сумма рационального числа 2 , 1 и числа 0 равно 2 , 1 и: 6 4 5 + 0 = 6 4 5 .
Сложение противоположных рациональных чисел
Сумма противоположных чисел равна нулю.
Данное правило можно записать в виде: a + ( — a ) = 0 (для любого рационального числа a ).
К примеру, числа 45 , 13 и — 45 , 13 являются противоположными, т.е. их сумма равно нулю: 45 , 13 + ( — 45 , 13 ) = 0 .
Сложение положительных рациональных чисел
В виде обыкновенной дроби возможно представить любое положительное рациональное число и использовать далее схему сложения обыкновенных дробей.
Необходимо произвести сложение рациональных чисел: 0 , 6 и 5 9 .
Решение
Выполним перевод десятичной дроби в обыкновенную и тогда: 0 , 6 + 5 9 = 6 10 + 5 9 .
Осуществим сложение дробей с разными знаменателями:
6 10 + 5 9 = 54 90 + 50 90 = 104 90 = 1 7 45
Ответ: 0 , 6 + 5 9 = 1 7 45 .
Рациональные числа, которые подвергают действию сложения, возможно записать в виде конечных десятичных дробей или в виде смешанных чисел и, таким образом, осуществить сложение десятичных дробей и смешанных чисел соответственно.
Сложение рациональных чисел с разными знаками
Для того, чтобы осуществить сложение рациональных чисел с разными знаками, необходимо из бОльшего модуля слагаемых вычесть меньший и перед полученным результатом поставить знак того числа, модуль которого больше.
Необходимо осуществить сложение рациональных чисел с разными знаками 8 , 2 и — 2 3 4 .
Решение
Согласно исходным данным, необходимо произвести сложение положительного числа с отрицательным. Придерживаясь вышеуказанного правила, определим модули заданных чисел: | 8 , 2 | = 8 , 2 и | — 2 3 4 | = 2 3 4 . Проведя сравнение модулей — рациональных чисел, получим: 8 , 2 > 2 3 4 и соответственно поймем, какое число из заданных станет уменьшаемым, а какое — вычитаемым. Произведем вычитание смешанных чисел, т.е.: 8 , 2 — 2 3 4 = 8 2 10 — 2 3 4 = 5 9 20 .
Полученному результату присваивается знак плюс, т.к. бОльшее из слагаемых по модулю – положительное число. Ответ: 8 , 2 + ( — 2 3 4 ) = 5 9 20 .
Сложение отрицательных рациональных чисел
Для того, чтобы произвести сложение отрицательных рациональных чисел, необходимо сложить модули заданных слагаемых, затем полученному результату присвоить знак минус.
Необходимо произвести сложение чисел: — 4 , 0203 и — 12 , 193 .
Решение
Модули заданных чисел соответственно равны: 4 , 0203 и 12 , 193 . Сложим их:
Полученному результату присваиваем знак минус: — 16 , 2133 .
Ответ: ( — 4 , 0203 ) + ( — 12 , 193 ) = — 16 , 2133 .
Действие вычитания рациональных чисел
Вычитание – действие, обратное сложению, в котором мы находим неизвестное слагаемое по сумме и известному слагаемому. Тогда из равенства c + b = a следует, что a — b = c и a — c = b . И наоборот: из равенств a — b = c и a — c = b следует, что c + b = a .
При вычитании из бОльшего положительного рационального числа мы либо производим вычитание обыкновенных дробей, либо, если это уместно, вычитание десятичных дробей или смешанных.
Необходимо вычислить разность рациональных чисел: 4 , ( 36 ) – 1 5 .
Решение
Сначала переведем периодическую десятичную дробь в обыкновенную: 4 , ( 36 ) = 4 + ( 0 , 36 + 0 , 0036 + … ) = 4 + 0 , 36 1 — 0 , 01 = 4 + 36 99 = 4 + 4 11 = 4 4 11
Далее переходим к действию вычитания обыкновенной дроби из смешанного числа: 4 , ( 36 ) — 1 5 = 4 4 11 — 1 5 = 4 + 4 11 — 1 5 = 4 + 20 55 — 11 55 = 4 + 9 55 = 4 9 55
Ответ: 4 , ( 36 ) — 1 5 = 4 9 55
В прочих случаях вычитание рациональных чисел необходимо заменить сложением: к уменьшаемому прибавить число, противоположное вычитаемому: a – b = a + ( — b ) .
Указанное равенство можно доказать, опираясь на свойства действий с рациональными числами. Они дают возможность записать цепочку равенств: ( a + ( — b ) ) + b = a + ( ( — b ) + b ) = a + 0 = a . Отсюда в силу смысла действия вычитания следует, что сумма a + ( — b ) есть разность чисел a и b .
Необходимо из рационального числа 2 7 вычесть рациональное число 5 3 7
Решение
Согласно последнему указанному правилу используем для дальнейших действий число, противоположное вычитаемому, т.е. — 5 3 7 . Тогда: 2 7 — 5 3 7 = 2 7 + — 5 3 7
Далее произведем сложение рациональных чисел с разными знаками: 2 7 + — 5 3 7 = — 5 3 7 — 2 7 = — 5 3 7 — 2 7 = — 5 1 7
Ответ: 2 7 + — 5 3 7 = — 5 1 7
Действие умножения рациональных чисел
Общее понятие числа расширяется от натуральных чисел к целым, так же как от целых к рациональным. Все действия с целыми числами имеют те же свойства, что и действия с натуральными. В таком случае, и действия с рациональными числами также должны характеризоваться всеми свойствами действий с целыми числами. Но для действия умножения рациональных чисел присуще дополнительное свойство: свойство умножения взаимообратных чисел. Вышесказанному соответствуют все правила умножения рациональных чисел. Укажем их.
Умножение на нуль
Произведение любого рационального числа a на нуль есть нуль.
Используя переместительное свойство умножения, получим: 0 · а = 0 .
К примеру, умножение рационального числа 7 13 на 0 даст 0 . Перемножив отрицательное рациональное число — 7 1 8 и нуль, также получим нуль. В частном случае, произведение нуля на нуль есть нуль: 0 · 0 = 0 .
Умножение на единицу
Умножение любого рационального числа a на 1 дает число a .
Т.е. a · 1 = a или 1 · a = a (для любого рационального a ). Единица здесь является нейтральным числом по умножению.
К примеру, умножение рационального числа 5 , 46 на 1 даст в итоге число 5 , 46 .
Умножение взаимообратных чисел
Если множители есть взаимообратные числа, то результатом их произведения будет единица. Т.е. : а · а — 1 = 1 .
К примеру, результатом произведения чисел 5 6 и 6 5 будет единица.
Умножение положительных рациональных чисел
В общих случаях умножение положительных рациональных чисел сводится к умножению обыкновенных дробей. Первым действием множители представляются в виде обыкновенных дробей, если заданные числа таковыми не являются.
Необходимо вычислить произведение положительных рациональных чисел 0 , 5 и 6 25 .
Решение
Представим заданную десятичную дробь в виде обыкновенной 0 , 5 = 5 10 = 1 2 .
Далее произведем умножение обыкновенных дробей: 1 2 · 6 25 = 6 50 = 3 25 .
Ответ: 0 , 5 · 6 25 = 3 25
Можно также работать и с конечными десятичными дробями. Удобнее будет в данном случае не переходить к действиям над обыкновенными дробями.
Необходимо вычислить произведение рациональных чисел 2 , 121 и 3 , 4 .
Решение
Перемножим десятичные дроби столбиком:
Ответ: 2 , 121 · 3 , 4 = 7 , 2114
В частных случаях нахождение произведения рациональных чисел представляет собой умножение натуральных чисел, умножение натурального числа на обыкновенную или десятичную дробь.
Умножение рациональных чисел с разными знаками
Чтобы найти произведение рациональных чисел с разными знаками, необходимо перемножить модули множителей и полученному результату присвоить знак минус.
Необходимо найти произведение чисел: — 3 3 8 и 2 1 2
Решение
Согласно вышеуказанному правилу получим: — 3 3 8 · 2 1 2 = — 3 3 8 · 2 1 2 = — 3 3 8 · 2 1 2
Заменим смешанные дроби неправильными и найдем искомое произведение: — 3 3 8 · 2 1 2 = — 27 8 · 5 2 = — 135 16 = — 8 7 16
Ответ: — 3 3 8 · 2 1 2 = — 8 7 16
Умножение отрицательных рациональных чисел
Для того, чтобы найти произведение отрицательных рациональных чисел, необходимо перемножить модули множителей.
Необходимо найти произведение отрицательных рациональных чисел — 3 , 146 и — 56 .
Решение: модули заданных чисел соответственно равны 3 , 146 и 56 .
Перемножим их столбиком:
Полученный результат и будет являться искомым произведением.
Ответ: ( — 3 , 146 ) · ( — 56 ) = 176 , 176
Деление рациональных чисел
Деление – действие, обратно умножению, в ходе которого мы находим неизвестный множитель по заданному произведению и известному множителю. Смысл действия деления можно записать так: из равенства b · c = a следует, что a : b = c и a : c = b . И наоборот: из равенств a : b = c и a : c = b следует, что b · c = a .
На множестве рациональных чисел деление не считается самостоятельным действием, поскольку оно производится через действие умножения. Собственно, этот смысл заложен в правило деления рациональных чисел.
Разделить число а на число b , отличное от нуля – то же самое, что умножить число a на число, обратное делителю. Т.е., на множестве рациональных чисел верно равенство: a : b = a · b — 1 .
Указанное равенство доказывается просто: на основе свойств действий с рациональными числами справедливой будет цепочка равенств ( a · b — 1 ) · b = a · ( b — 1 · b ) = a · 1 = a , которая и доказывает равенство a : b = a · b — 1 .
Таким образом, деление рационального числа на другое рациональное число, отличное от нуля, сводится к действию умножения рациональных чисел.
Необходимо выполнить действие деления 3 1 3 : — 1 1 6
Решение
Определим число, обратное заданному делителю. Запишем заданный делитель в виде неправильной дроби: — 1 1 6 = — 7 6 .
Число, обратное этой дроби, будет: — 6 7 . Теперь, согласно вышеуказанному правилу, произведем действие умножения рациональных чисел: 3 1 3 — 1 1 6 = 3 1 3 · — 6 7 = 10 3 · ( — 6 7 ) = — ( 10 3 · 6 7 ) = — 20 7 = — 2 6 7
Ответ: 3 1 3 : — 1 1 6 = — 2 6 7
Источник