Как решать такое рациональное способ решения

Рациональное решение

Математика.
Рациональное решение

Смотрим в словаре, что же такое рациональное решение – это: 1) продуманное, взвешенное решение, принятое на основе сравнения вариантов и их выбора, а также учета еще многих факторов; 2) выгодное, целесообразное решение.

Иногда на уроках при решении заданий учеником выясняется, что он вообще не знает, что такое рациональное решение. Оказывается, что такое решение связано с недостаточными познаниями ученика.

Задача.

Однажды на уроке математики учитель показал ребятам куб и предложил найти площадь поверхности этого куба.

— Это элементарно, — поднял первым руку Петя Самохвалов. – Сначала измеряем два ребра, исходящие из одной вершины. Первое ребро равно 10 см, и второе ребро равно 10 см. Найдем площадь этой грани: 10 х 10 = 100 (см 2 ). Теперь измерим другие два ребра. Первое равно 10 см, и второе равно 10 см. Перемножим их, будет 100 см 2 . Это площадь второй грани…

Потом Петя точно также нашел площадь четырех оставшихся граней. Все они оказались равными 100 см 2 .

— Теперь, продолжал Петя, сложим все найденные площади, будет 600 см 2 . Это и есть площадь поверхности куба.

Как же Петя был удивлен, когда учитель не поставил ему пятерку. Как вы думаете почему?

Иногда не находя выгодное, рациональное решение ученик заходит в такие дебри, что уже и сам запутывается.

Был такой случай на уроке математики:
Ученик решал задачу у доски. При не правильно выбранном, не рациональном решении он уже исписал почти всю доску. Учитель очень серьезно двух ребят посильнее и покрепче, попросила из соседнего свободного на данный момент класса принести еще одну доску. Не сознавая подвоха, ребята встали и пошли к выходу. Когда они дошли уже до двери, учитель сказала:
— Возможно нужно будет принести и две доски… Ученику, решающему задачу у доски места катастрофически не хватает…

Вот тут-то все всё и поняли. Посмеялись от души.

И еще одна задача:

Двое шли — рубль нашли.
Четверо пойдут — сколько найдут?

Источник

Рациональные приёмы вычислений на уроках математики

Разделы: Математика

Класс: 4

Ключевые слова: математика

«Мозг хорошо устроенный ценится больше,
чем мозг хорошо наполненный.»

Умения рационально производить вычисления характеризуют довольно высокий уровень математического развития. Знакомство и применение рациональных способов вычислений развивает вариативность мышления, показывает ценность знаний, которые при этом используются. Эти умения чрезвычайно сложны, формируются они медленно и за время обучения в начальной школе далеко не у всех детей могут быть достаточно сформированы.

Говорят, если хотите научиться плавать, вы должны войти в воду, а если хотите уметь решать задачи, то должны начать их решать. Но для начала надо освоить азы арифметики. Научиться считать быстро. Считать в уме можно только при большом желании и систематической тренировки. И тогда перед вами откроется совсем другая математика: живая, полезная, понятная.

Скажите, пожалуйста, как рациональнее сложить 1+ 7, 4 * 8? Какие законы применили?

27 + 46+13? 27 – 19 – 7? Какие свойства, законы? Т.е основы рациональных приёмов вычислений основаны на чём?

Методика преподавания математики в начальных классах раскрывает основы рациональных приёмов вычислений, связанных с выполнением разных математических действий с натуральными числами.

Рациональные приёмы сложения основываются

1. Коммуникативный закон сложения а +в =в +а

2. Ассоциативный закон сложения а+в+с = а+ (в+с)

на коммуникативном и ассоциативном приёмах сложения, а так же свойствах изменения суммы. Рассмотрим некоторые из них.

Читайте также:  Способы вертикального выращивания клубники

Свойства сложения.

1.1

а+в+с =У, то (а – к) +с+в = У –к

38+24+15 = 77, то 36+ 24+ 15 = ?

а+в+с=У, то (а+ к) +в +с = У+к

38 + 24+15 = 77, то 40+ 24 + 15 =?

1.2.

а+ в =С , то (а +к ) + (в – к) = С

56 + 27 = 83, то (56 + 4) + (27 – 4) = ?

Какие ещё рациональные приёмы сложения можно применить на уроке математики?

Округление одного из слагаемых; поразрядного сложения; приём группировки вокруг одного и того же «корневого» числа.

Рассмотрим эти приёмы:

13 + 49 + 76 + 61 = (поразрядное сложение)

38 + 59 = 38 + (…округление слагаемого)

26 + 24 + 23 +25 + 24 = (группировка вокруг одного и того же «корневого» числа

Все приёмы рациональных вычислений, связанных с вычитанием, основываются на законах вычитания.

Если уменьшаемое увеличить или уменьшить на число, то соответственно разность увеличится или уменьшится на это же самое число

а – в = С, то (а +к) — в = С +к

74 – 28 = 46, то 77 – 28 = 49

а-в = С , то (а – к ) — в = С-к

74 – 28 = 46, то 71 – 28 = 43

Если вычитаемое увеличить или уменьшить на несколько единиц, то разность измениться в противоположную сторону.

Если уменьшаемое и вычитаемое уменьшить или увеличить на одно и тоже число, то разность не измениться.

Найди верные равенства.

229 – 36 = (229 – 9 ) – ( 36 – 6)

174 – 58 = (174 – 4) – ( 58 – 4)

358 – 39 = ( 358 – 8 ) – (39 – 8)

617 – 48 = ( 617 – 7 ) – (48 – 8)

Для рациональных вычислений используют частичные приёмы умножения и деления.

Приём замены множителя или делителя на произведение.

75 * 8 = 75 * 2*2*2=

960 : 15 = 960 : 3 : 5 =

Приём умножения на 9, 99,999, 11 …

87 * 99 = 87 * 100- 87 = 8700 – 87 = 8613

87 * 11 = 87 *10 + 87 = 870+ 87 = 957

Успешное применение различных приёмов зависит от умения подмечать особенности чисел и их сочетаний. Например, познакомив детей в первом классе с натуральным рядом чисел и имея его перед глазами, легко закрепить состав числа.

0 1 2 3 4 5 6 7

Отработав, таким образом, состав чисел в пределах 10 и познакомившись с переместительным законом сложения, дети легко справляются с заданием найти сумму чисел в пределах 10, а в дальнейшем, используя переместительное и сочетательное свойство сложения, легко можно найти сумму других чисел. Например:

48 +14 +22 +36 =120

Существуют приёмы на знаниях некоторых свойств чисел или результатов действий. Легко находить сумму последовательных нечётных чисел, начиная с 1.

Она равна произведению количества слагаемых на самого себя. (проверить)

Рационализация может осуществляться за счет возможности выполнять некоторые арифметические действия. Для этого очень важно научить детей внимательно рассматривать условия задания, суметь подметить все его особенности. Такие задания, как поставь нужный знак действия16 … 17 = 33 ( рассуждать), далее подобные задания усложняются. 8…6…33 = 15

Сравни, не вычисляя

51 : 3 … 30 : 3 + 21 :5

636 :6 … 600 : 6+ 30 : 6+ 6 :6

Задания могут даваться в занимательной форме: Математический лабиринт, составь слово, найди пару , расшифруй пословицу и т.д.

Используй рациональные приёмы вычисления, разгадай слово

Какие приёмы использовали?

Важно показать ученикам красоту и изящество устных вычислений, используя разнообразные вычислительные приёмы, помогающие значительно облегчить процесс вычисления.

СЧЁТ НА ПАЛЬЦАХ: способ быстрого умножения чисел первого десятка на 9. Допустим нам надо умножить 7 на 9. Повернём ладошки к себе, загнём седьмой палец, число пальцев слева от загнутого пальца – это число десятков, а число – справа, количество единиц.

Все задания, которые рассматривались, воспитывают интерес к математике, развивают их математические способности. Такую работу можно продолжать на математическом кружке.

Читайте также:  Лучший способ хороших оценок

Источник

Рациональные уравнения (ЕГЭ 2022)

Рациональные уравнения – это уравнения, в которых и левая, и правая части – рациональные выражения.

Ну… Это было сухое математическое определение, и слово-то какое: «рациональные». А по сути, рациональные выражения – это просто целые и дробные выражения без знака корня.

Что же получается?

А получается, что под пугающим «рациональным уравнением» скрывается всего лишь уравнение, в котором могут присутствовать сложение, вычитание, умножение, деление и возведение в степень с целым показателем, но НЕ корень из переменной.

Рациональные уравнения — коротко о главном

Определение рационального уравнения:

Рациональное уравнение – это равенство двух рациональных (без знака корня) выражений.

Дробно-рациональное уравнение – рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.

Алгоритм решения рациональных уравнений:

  • Понять, точно ли это рациональное уравнение (убедись, что в нем нет корней);
  • Определить ОДЗ;
  • Найти общий знаменатель дробей и умножить на него обе части уравнения;
  • Решить получившееся целое уравнение;
  • Исключить из его корней те, которые обращают в ноль знаменатель дробей.

Система для решения дробно рациональных уравнений:

Что такое рациональные уравнения?

Давай научимся отличать рациональные уравнения от иррациональных! Зачем? Рациональные уравнения решать проще.

А зачем работать больше, если можно работать меньше?

  • \( \displaystyle 3\cdot (x+1)=x\) как думаешь, какое это? Тут сложение, умножение, нет корней, и степеней никаких – рациональное;
  • \( \displaystyle 3\cdot (x+1)=\sqrt\) – вот тебе и корень из переменной, значит уравнение НЕ рациональное (иррациональное);
  • \( \displaystyle 3\cdot (x+1)=\frac<1>\) а это – рациональное;
  • \( \displaystyle 3\cdot (x+1)=<^<2>>\) тут вот степень, но она с целым показателем степени (\( \displaystyle 2\)– целое число) – значит это тоже рациональное уравнение;
  • \( \displaystyle 3\cdot (x+1)=<^<-1>>\) даже уравнение с отрицательным показателем степени тоже является рациональным, ведь по сути \( \displaystyle <^<-1>>\), это \( \displaystyle \frac<1>\);
  • \( \displaystyle 3\cdot (x+1)=<^<0>>\) – тоже рациональное, т.к. \( \displaystyle <^<0>>=1\);
  • \( \displaystyle 3\cdot (x+1)=<^<\frac<1><2>>>\) – а с ним поосторожнее, степень-то дробная, а по свойству корней \( \displaystyle <^<\frac<1><2>>>=\sqrt\), как ты помнишь, корня в рациональных уравнениях не бывает.

Надеюсь, теперь ты сможешь различать, к какому виду относится уравнение. (И не поедешь из Москвы в Петербург через Магадан, решая рациональные уравнения как нерациональные).

Целые рациональные уравнения

Важно знать, что рациональные уравнения в свою очередь тоже разные бывают.

Если в дроби нет деления на переменную (то есть на \( \displaystyle x\), \( \displaystyle y\) и т.д.), тогда рациональное уравнение будет называться целым (или линейным) уравнением, вот примеры:

Умеешь такие решать? – конечно, умеешь, упрощаешь и находишь неизвестное, тема-то 5-ого или 6-ого класса.

Ну, рассмотрим первый из примеров на всякий случай и по порядочку. Все неизвестные переносим влево, все известные вправо:

Какой наименьший общий знаменатель будет?

Правильно \( \displaystyle 6\)!

Чтоб к нему привести домножаем и числитель и знаменатель первого слагаемое на \( \displaystyle 2\), а второго на \( \displaystyle 3\), этого делать не запрещено, если и числитель и знаменатель дроби умножить на одно и то же значение, то дробь от этого не изменится, т.к. ее можно будет сократить на то же число.

А \( \displaystyle 13\) не трогаем, оно нам не мешает, имеем:

А теперь делим обе части на \( \displaystyle 13\):

Поскольку уравнение целое, что мы уже определили, то и ограничений никаких нет, \( \displaystyle 6\), так \( \displaystyle 6\), ну можно для верности подставить этот ответ в исходное уравнение, получим \( \displaystyle 0=0\), значит все верно и ответ подходит (ты можешь пересчитать, а вообще должно сойтись).

Дробно-рациональные уравнения

А вот еще одно уравнение \( \displaystyle \frac<5>+\frac<4-6><(x+1)\cdot (x+3)>=3\).

Это уравнение целое? НЕТ. Тут есть деление на переменную \( \displaystyle x\), а это говорит о том, что уравнение не целое. Тогда какое же оно? Это дробно рациональное уравнение.

Дробно-рациональное уравнение – рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.

На первый взгляд особой разницы не видно, ну давай попробуем решать его как мы решали целое (линейное) уравнение.

Для начала найдем наименьший общий знаменатель, это будет \( \displaystyle (x+1)\cdot (x+3)\).

Важный момент!

В предыдущем примере, где было целое уравнение мы не стали свободный член \( \displaystyle 13\) приводить к знаменателю, т.к. умножали все на числа без переменных, но тут-то наименьший общий знаменатель \( \displaystyle (x+1)\cdot (x+3)\).

А это тебе не шутки, переменная в знаменателе!

Решая дробно-рациональное уравнение, обе его части умножаем на наименьший общий знаменатель!

Это надеюсь, ты запомнишь, но давай посмотрим что вышло:

Что-то оно огромное получилось, надо все посокращать:

\( \displaystyle 5(x+3)+(4-6)=3\cdot (x+1)\cdot (x+3)\).

Раскроем скобки и приведем подобные члены:

Ну как, это уже попроще выглядит, чем в начале было?

Выносим за скобку общий множитель: \( \displaystyle 3x\cdot (x+1)=0\)

У этого уравнения два решения, его левая сторона принимает нулевое значение при \( \displaystyle x=0\) и \( \displaystyle x=-1\).

Вроде бы все, ну ладно давайте напоследок подставим корни \( \displaystyle x=0\) и \( \displaystyle x=-1\) в исходное уравнение, чтобы проверить, нет ли ошибок. Сначала подставим \( \displaystyle 0\), получается \( \displaystyle 3=3\) –нет претензий?

С ним все нормально. А теперь \( \displaystyle -1\), и тут же видим в знаменателе первого члена \( \displaystyle -1+1\)!

Но ведь это же будет ноль!

На ноль делить нельзя, это все знают, в чем же дело.

Дело в ОДЗ — Области Допустимых Значений!

Всякий раз когда ты видишь уравнение, где есть переменные (\( \displaystyle x,y\) и т.д.) в знаменателе, прежде всего, нужно найти ОДЗ, найти какие значения может принимать икс.

Хотя удобнее в ОДЗ написать, чему икс НЕ может быть равен, ведь таких значений не так много, как правило.

Просто запомни, что на ноль делить нельзя! И перед тем как решать наше уравнение нам следовало сделать так:

ОДЗ: \( \displaystyle x+1\ne 0\) и \( \displaystyle x+3\ne 0\) \( \displaystyle \Rightarrow x\ne -1\) и \( \displaystyle x\ne -3\).

Если бы мы сразу так написали, то заранее бы знали, что эти ответы стоит исключить и так, из полученных нами \( \displaystyle x=0\) и \( \displaystyle x=-1\) мы смело исключаем \( \displaystyle x=-1\), т.к. он противоречит ОДЗ.

Значит, какой ответ будет у решенного уравнения?

В ответ стоит написать только один корень, \( \displaystyle x=0\).

Стоит заметить, что ОДЗ не всегда сказывается на ответе, возможны случаи, когда корни, которые мы получили, не попадают под ограничения ОДЗ.

Но писать ОДЗ в дробно рациональных уравнениях стоит всегда – так просто спокойнее, что ты ничего не упустил и да,

ВСЕГДА по окончании решения сверяй свои корни и область допустимых значений!

Алгоритм решения рационального уравнения

  • Понять, точно ли перед тобой рациональное уравнение (убедись, что в нем нет корней);
  • Определить ОДЗ;
  • Найти общий знаменатель дробей и умножить на него обе части уравнения;
  • Решить получившееся целое уравнение;
  • Исключить из его корней те, которые обращают в ноль знаменатель дробей.

Усвоил, говоришь? А ты докажи! 🙂 Вот тебе примеры на закрепление. Попробуй решить сам, а потом сверься с ответом.

Источник

Читайте также:  Способ соединения письменных знаков
Оцените статью
Разные способы