- Как решать систему линейных уравнений графическим способом систему
- Графический метод
- Пример 1
- Пример 2
- Пример 3
- Пример 4
- Пример 5
- Видео YouTube
- Системы линейных уравнений (7 класс)
- Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.
- Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.
- Как решить систему линейных уравнений?
- Графическое решение систем линейных уравнений
- Презентация к уроку
Как решать систему линейных уравнений графическим способом систему
Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться , такую группу уравнений мы называем системой.
Объединяем уравнения в систему с помощью фигурной скобки:
Графический метод
Недаром ответ записывается так же, как координаты какой-нибудь точки.
Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.
Например, построим графики уравнений из предыдущего примера.
Пример 1
Для этого сперва выразим y y y в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно x x x ):
Для того чтобы графически решить систему уравнений с двумя переменными нужно:
1) построить графики уравнений в одной системе координат;
2) найти координаты точек пересечения этих графиков (координаты точек пересечения графиков и есть решения системы);
Разберем это задание на примере.
Решить графически систему линейных уравнений.
Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.
Пример 2
Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может:
а) иметь единственное решение;
б) не иметь решений;
в) иметь бесконечное множество решений.
2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.
Пример 3
Графическое решение системы
Пример 4
Решить графическим способом систему уравнений.
Графиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.
Прямую y=2x-3 провели через точки (0; -3) и (2; 1).
Прямую y=x+1 провели через точки (0; 1) и (2; 3).
Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.
Пример 5
Выражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.
Прямую y=2x+9 проводим через точки (0; 9) и (-3; 3). Прямую y=-1,5x+2 проводим через точки (0; 2) и (2; -1).
Наши прямые пересеклись в точке В(-2; 5).
ОБЯЗАТЕЛЬНО: Познакомимся с видео, где нам объяснят как решаются системы линейных уравнений графическим способом. РАССКАЖУТ, КАК РЕШАТЬ СИСТЕМЫ ГРАФИЧЕСКИ.
Видео YouTube
Источник
Системы линейных уравнений (7 класс)
Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.
Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.
Пример:
Пара значений \(x=3\);\(y=-1\) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо \(x\) и \(y\), оба уравнения превратятся в верные равенства \(\begin
А вот \(x=1\); \(y=-2\) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» \(\begin
Отметим, что такие пары часто записывают короче: вместо «\(x=3\); \(y=-1\)» пишут так: \((3;-1)\).
Как решить систему линейных уравнений?
Есть три основных способа решения систем линейных уравнений:
Возьмите любое из уравнений системы и выразите из него любую переменную.
Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.
Ответ запишите парой чисел \((x_0;y_0)\)
Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).
Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:
И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее
Способ алгебраического сложения.
Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:\(\begin
Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, (\(3\) и \(3\)) или противоположны по значению (например, \(5\) и \(-5\)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на \(2\), а второе — на \(3\).
\(\begin
Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.
Найдите неизвестное из полученного уравнения.
Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.
Ответ запишите парой чисел \((x_0;y_0)\).
Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.
Пример. Решите систему уравнений: \(\begin
Приводим систему к виду \(\begin
«Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на \(3\).
Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.
Делим уравнение на \(8\), чтобы найти \(y\).
Игрек нашли. Теперь найдем \(x\), подставив вместо игрека \(-2\) в любое из уравнений системы.
Икс тоже найден. Пишем ответ.
Приведите каждое уравнение к виду линейной функции \(y=kx+b\).
Постройте графики этих функций. Как? Можете прочитать здесь .
Ответ: \((4;2)\)
Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений \(x_0\) и \(y_0\) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
Пример: решая систему \(\begin
Оба уравнения сошлись, решение системы найдено верно.
Пример. Решите систему уравнений: \(\begin
Перенесем все выражения с буквами в одну сторону, а числа в другую.
Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на \(2\).
Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.
Подставим \(6x-13\) вместо \(y\) в первое уравнение.
Первое уравнение превратилась в обычное линейное . Решаем его.
Сначала раскроем скобки.
Перенесем \(117\) вправо и приведем подобные слагаемые.
Поделим обе части первого уравнения на \(67\).
Ура, мы нашли \(x\)! Подставим его значение во второе уравнение и найдем \(y\).
Источник
Графическое решение систем линейных уравнений
Презентация к уроку
Цели и задачи урока:
- продолжить работу по формированию навыков решения систем уравнений графическим методом;
- провести исследования и сделать выводы о количестве решений системы двух линейных уравнений;
- развивать интерес к предмету через игру.
1. Организационный момент (Планерка) – 2 мин.
– Добрый день! Начинаем нашу традиционную планерку. Мы рады приветствовать всех, кто сегодня у нас в гостях, в нашей лаборатории (представляю гостей). Наша лаборатория называется: «ТРУД с интересом и удовольствием» (показываю слайд 2). Название служит девизом в нашей работе. «Твори, Решай, Учись, Добивайся с интересом и удовольствием». Дорогие гости, представляю вам руководителей нашей лаборатории (слайд 3).
Наша лаборатория занимается изучением научных трудов, исследованиями, экспертизой, работает над созданием творческих проектов.
Сегодня тема нашего обсуждения: «Графическое решение систем линейных уравнений». (Предлагаю записать тему урока)
Программа дня: (слайд 4)
1. Планерка
2. Расширенный ученый совет:
- Выступления по теме
- Допуск к работе
3. Экспертиза
4. Исследования и открытия
5. Творческий проект
6. Отчет
7. Планирование
2. Опрос и устная работа (Расширенный ученый совет) – 10 мин.
– Сегодня мы проводим расширенный ученый совет, на котором присутствуют не только руководители отделов, но и все члены нашего коллектива. Лаборатория только начала работу по теме: «Графическое решение систем линейных уравнений». Мы должны постараться добиться самых высоких достижений в этом вопросе. Наша лаборатория должна славиться качеством исследований по этой теме. Я, как старший научный сотрудник, желаю всем удачи!
Результаты исследований будут сообщены начальнику лаборатории.
Слово для доклада о решении систем уравнений имеет…(вызываю ученика к доске). Даю заданию задание (карточка 1).
А лаборант…(называю фамилию) напомнит, как строить график функции с модулем. Даю карточку 2.
Карточка 1 (решение задания на слайде 7)
Решить систему уравнений:
Карточка 2 (решение задания на слайде 9)
Построить график функции: y = | 1,5x – 3 |
Пока сотрудники готовятся к докладу, я проверю, как вы готовы к выполнению исследований. Каждый из вас должен получить допуск к работе. (Начинаем устный счет с записью ответов в тетрадь)
Допуск к работе (задания на слайдах 5 и 6)
1) Выразить у через x:
3x + y = 4 (y = 4 – 3x)
5x – y = 2 (y = 5x – 2)
1/2y – x = 7 (y = 2x + 14)
2x + 1/3y – 1 = 0 (y = – 6x + 3)
2) Решить уравнение:
5x + 2 = 0 (x = – 2/5)
4x – 3 = 0 (x = 3/4)
2 – 3x = 0 (x = 2/3)
1/3x + 4 = 0 (x = – 12)
3) Дана система уравнений:
Какая из пар чисел (– 1; 1) или (1; – 1) является решением данной системы уравнений?
Сразу после каждого фрагмента устного счета учащиеся обмениваются тетрадями (с рядом сидящим учеником в одном отделе), на слайдах появляются верные ответы; проверяющий ставит плюс или минус. По окончании работы начальники отделов вносят результаты в сводную таблицу (см ниже); за каждый пример дается 1 балл (возможно получить 9 баллов).
Те, кто набрал 5 и более баллов, получают допуск к работе. Остальные получают условный допуск, т.е. должны будут работать под контролем начальника отдела.
Таблица (заполняет начальник)
п/п | Фамилия | Допуск | Экспертиза | Исследования | Проект | Всего |
1 | Климов | |||||
Бережная | ||||||
Мацкевич |
(Таблицы выдаются до начала урока)
После получения допуска слушаем ответы учащихся у доски. За ответ ученик получает 9 баллов, если ответ полный (максимальное количество при допуске), 4балла, если ответ не полный. Баллы вносят в графу «допуск».
Если на доске правильное решение, то слайды 7 и 9 можно не показывать. Если решение правильное, но нечетко выполненное или решение неправильное, то слайды демонстрируются обязательно с пояснениями.
Слайд 8показываю обязательно после ответа ученика по карточке 1. На этом слайде выводы важные для урока.
Алгоритм решения систем графическим способом:
- Выразить y через x в каждом уравнении системы.
- Построить график каждого уравнения системы.
- Найти координаты точек пересечения графиков.
- Сделать проверку (обращаю внимание учащихся на то, что графический метод обычно дает приближенное решение, но в случае попадания пересечения графиков в точку с целыми координатами, можно выполнить проверку и получить точный ответ).
- Записать ответ.
3. Упражнения (Экспертиза) – 5 мин.
Вчера в работе некоторых сотрудников были допущены грубые ошибки. Сегодня вы уже более компетентны в вопросе графического решения. Вам предлагается провести экспертизу предложенных решений, т.е. найти ошибки в решениях. Демонстрируется слайд 10.
Работа идет в отделах. (На каждый стол выдаются ксерокопии заданий с ошибками; в каждом отделе сотрудники должны найти ошибки и подчеркнуть их или исправить; ксерокопии сдать старшему научному сотруднику, т.е. учителю). Тем, кто найдет и исправит ошибку, начальник добавляет 2 балла. Затем обсуждаем допущенные ошибки и указываем их на слайде 10.
Ошибка 1
Решить систему уравнений:
Ответ: решений нет.
Учащиеся должны продолжить прямые до пересечения и получить ответ: (– 2; 1).
Ошибка 2.
Решить систему уравнений:
Учащиеся должны найти ошибку в преобразовании первого уравнения и исправить на готовом чертеже. Получить другой ответ: (2; 5).
4. Объяснение нового материала (Исследования и открытия) – 12 мин.
Учащимся предлагаю решить графически три системы. Каждый ученик решает самостоятельно в тетради. Консультироваться могут только те, у кого условный допуск.
Решение
Без построения графиков понятно, что прямые совпадут.
На слайде 11 показано решение систем; ожидаемо, что учащиеся будут испытывать затруднение при записи ответа в примере 3. После работы в отделах проверяем решение (за верное начальник добавляет 2 балла). Теперь пришло время обсудить, сколько решений может иметь система двух линейных уравнений.
Учащиеся должны сделать выводы самостоятельно и объяснить их, перечислив случаи взаимного расположения прямых на плоскости (слайд 12).
5. Творческий проект (Упражнения) – 12 мин.
Задание дается для отдела. Начальник дает каждому лаборанту по способностям фрагмент его выполнения.
Решить системы уравнений графически:
После раскрытия скобок учащиеся должны получить систему:
После раскрытия скобок первое уравнение имеет вид: y = 2/3x + 4.
6. Отчет (проверка выполнения задания) – 2 мин.
После выполнения творческого проекта учащиеся сдают тетради. На слайде 13 показываю то, что должно было получиться. Начальники сдают таблицу. Последнюю графу заполняет учитель и ставит отметку (отметки можно сообщить ученикам на следующем уроке). В проекте решение первой системы оценивается тремя баллами, а второй – четырьмя.
7. Планирование (подведение итогов и домашнее задание) – 2 мин.
Подведем итоги нашего труда. Мы неплохо поработали. Конкретно о результатах поговорим завтра на планерке. Безусловно, все без исключения лаборанты овладели графическим методом решения систем уравнений, усвоили, какое количество решений может иметь система. Завтра каждого из вас ждет персональный проект. Для дополнительной подготовки: п.36; 647-649(2); повторите аналитические методы решение систем. 649(2) решите и аналитическим методом.
Нашу работу в течение всего дня контролировал директор лаборатории Ноумэн Ноу Мэнович. Ему слово. (Показываю заключительный слайд).
Источник