Делить столбиком проще, чем высчитывать в уме. Этот способ наглядный, помогает держать во внимании каждый шаг и запомнить алгоритм, который впоследствии будет срабатывать автоматически.
Рассмотрим пример деления трехзначного числа на однозначное 322 : 7. Для начала определимся с терминами:
322 — делимое или то, что необходимо поделить;
7 — делитель или то, на что нужно поделить:
частное — результат действия.
Шаг 1. Слева размещаем делимое 322, справа делитель 7, между ставим уголок, а частное посчитаем и запишем под делителем.
Шаг 2. Смотрим на делимое слева направо и находим ту часть, которая больше делителя. 3, 32 или 322? Нам подходит 32. Теперь нужно определить сколько раз наш делитель 7 содержится в числе 32. Похоже, что четыре раза.
Проверяем: 4 × 7 = 28, а 28
Шаг 3. Остаток равен 4. Для продолжения решения его нужно увеличить. Мы сделаем это за счет следующей цифры делимого. Приписываем к четверке оставшуюся двойку и продолжаем размышлять.
Шаг 4. Сколько раз делитель 7 содержится в числе 42? Кажется, шесть раз. Проверяем: 7 × 6 = 42, 42 = 42 — все верно. Записываем полученное число к четверке справа — это вторая цифра частного. Делаем вычитание в столбик 42 из 42, в остатке получаем 0. Значит, числа разделились нацело.
Мы закончили решать пример и в результате получили целое число 46.
Как выглядит деление в столбик с остатком
Это такое же деление, только в результате получается неровное число, как получилось в примере выше.
Например, делим 19 на 5. Наибольшее число, делящееся на 5 до 19 это 15. Проверяем 5*3=15, 19-15=4. Ответ: 3 и остаток 4. Записываем так: 19:5=3(4).
Еще пример: делим 29 на 6. Также определяем максимальное число, делящееся на 6 до 29. Подходит 24. Ответом будет: 4 и остаток 5. А записываем: 29:6=4(5).
Примеры на деление в столбик
Давайте закрепим знания на практике. Для этого разделите столбиком примеры ниже, а после проверьте полученные цифры — чур, не подглядывать!
Источник
Вычитание столбиком
О чем эта статья:
Основные понятия
Во всем мире принято использовать эти десять цифр для записи чисел: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. С их помощью создается любое натуральное число.
Название числа напрямую зависит от количества знаков. Однозначное — состоит из одного знака. Двузначное — из двух. Трехзначное — из трех и так далее.
Разряд — это позиция, на которой стоит цифра в записи. Их принято отсчитываются с конца.
Разряд единиц — то, чем заканчивается любое число.
Разряд десятков — то, что находится перед разрядом единиц.
Разряд сотен стоит перед разрядом десятков. На место отсутствующего разряда всегда можно поставить ноль.
Вычитание — это арифметическое действие, в котором отнимают меньшее число от большего. Большее число называется уменьшаемым, меньшее — вычитаемым. Результат их вычитания — разностью.
Свойства вычитания
Вычитание нуля из числа не изменяет этого числа.
Если из числа вычесть само это число, то разность равна нулю.
Чтобы вычесть сумму из числа, можно вычесть из этого числа одно слагаемое, из полученной разности — второе слагаемое.
a — (b + c) = a — b — c
Чтобы вычесть число из суммы, можно вычесть это число из одного слагаемого и полученную разность прибавить к сумме остальных слагаемых.
(a + b) — c = (a — c) + b = a + (b — c)
Чтобы прибавить разность к числу, можно прибавить к нему уменьшаемое и из полученной суммы вычесть вычитаемое.
а + (b — c) = a + b — c
Алгоритм вычитания в столбик
Вычитать столбиком проще, чем считать в уме, особенно при действиях с большими числами. Этот способ наглядный — помогает держать во внимании каждый шаг.
Рассмотрим алгоритм вычитания в столбик на примере: 4312 — 901.
Шаг 1. При вычитании столбиком самое главное — правильно записать исходные данные, чтобы самая правая цифра первого числа была под правой цифрой второго числа.
Большее число (уменьшаемое) записываем сверху. Слева между числами ставим знак минус. Вот так:
Шаг 2. Вычитание столбиком начинаем с самой правой цифры. Вычитаем по цифре (знаку). Результат записываем под чертой.
Шаг 3. Далее вычитаем из второй цифры справа: из «1» ноль.
Шаг 4. Теперь нам нужно вычесть из «3» девять. Это сделать невозможно. Поэтому займем десятку у соседа слева от тройки. Это цифра «4». Поставим над четверкой точку. Занятый десяток прибавим к «3»: 10 + 3 = 13.
Из «13» вычтем девять: 13 − 9 = 4.
Так как мы заняли десяток у «4», значит четверка уменьшилось на единицу. Об этом нам напоминает точка над «4»: 4 − 1 = 3. Вот, как это выглядит:
Рассмотрим пример вычитания в столбик чисел с нулями: 1009 — 423.
Шаг 1. Запишем числа в столбик. Большее число ставим сверху.
Вычитаем справа налево по одной цифре.
Шаг 2. Так как из нуля нельзя вычесть «2», занимаем у соседней цифры слева (ноль). Поставим над «0» точку. У нуля занять нельзя, поэтому смотрим на следующую цифру. Занимаем у «1» и ставим над ней точку. Теперь вычитаем не из нуля двойку, а из «10». Вот так:
Шаг 3. Над нулем стоит точка, поэтому нуль превращается в «9». Вычитаем из «9» четыре: 9 − 4 = 5.
Над «1» стоит точка. Единица уменьшается на «1»: 1 − 1 = 0. Если в результате разности левее всех цифр стоит ноль, то его записывать не надо.
Так выглядит алгоритм вычитания в столбик. Во 2 классе школьники могут сделать себе подсказку в виде таблички. А позже алгоритм запомнится и будет срабатывать автоматически, как «дважды два четыре».
Источник
Как быстро научить ребенка делить столбиком?
Чтобы упростить деление чисел, традиционно используется метод деления в столбик. Не все дети понимают принцип с первого раза, а многие взрослые уже успели его забыть. Давайте разберемся, как без лишних слов объяснить ребенку деление «уголком», чтобы он научился решать примеры с двузначными, трехзначными и даже четырехзначными числами.
Как правильно делить в столбик?
Удобнее рассмотреть сам процесс на несложной иллюстрации (№1).
Как найти частное двух чисел – 35 и 5?
Пишем числа, участвующие в делении, так: Делимое в данном случае – 35, делитель – 5. Под делителем пишется частное.
Находим неполное частное. Посмотрим на первую цифру слева. В нашем случае это 3, и оно меньше 5 – значит, добавляем следующую цифру слева и будем работать с этой величиной (у нас 35).
Определяем, какое количество пятерок (5) поместится в 35. Вспоминаем таблицу умножения и заключаем, что в 35 поместиться 7 пятерок. Значит, в графе частное записываем 7.
Проверяем правильность действий путем умножения: 7 X 5=35. Все верно, решение выполнено точно.
Что нужно знать ребенку для понимания деления столбиком?
Чтобы любимое чадо освоило, как делить уголком (в столбик), нужно два условия:
отличное знание таблицы умножения;
умение быстро считать в уме.
В конце 3 класса ученики усваивают, как разделить простые двузначные числа.
При переходе в 4 класс дети учатся делить многозначные числа (больше, чем 100). Также происходит обучение делению уголком чисел с двузначным и трехзначным делителем, решение примеров с остатком.
Методика обучения детей делению столбиком
Если школьник пропустил занятия по математике либо не смог усвоить знания на уроке, то родители должны сами донести до него нужную информацию. Спешка в таком деле неуместна – быстро не значит хорошо. Следует проявить терпение. Деление чисел – простое дело для взрослого, а для школьника задача весьма сложная.
Проверьте знание таблицы умножения. Если ребенок не умножает «автоматически», позвольте подсматривать в табличку.
Первый пример можно взять простейший, с делением без остатка на однозначное число (как в иллюстрации №1).
Когда малыш понял принцип и успешно справился с несложным заданием, пора научить его делению трехзначных чисел. Выполним пример №2.
Работа с многозначными числами
Задание 2: разделим 372 на 6. Для этого на листке бумаги производим следующие действия:
Определяем делимое (372) и делитель (6), оформляем запись в уголок:
Неполное частное в нашем варианте, конечно, 37 (т. к. в 3 не поместится 6 ни разу, берем следующую цифру).
Считаем, много ли шестерок уместится в 37. Если 36:6, то получим 6. Получившееся 6 пишем в графе «частное», а 36 пишем под делителем.
Вычитаем из 37-36=1. Пишем единичку слева внизу под чертой:
В единичке не поместится ни одной шестерки, значит, берем оставшуюся цифру из делимого (2). Получилось 12. Нужно определить, сколько в 12 поместится 6 (12 больше 6 ровно в два раза). Получаем 2. Записываем в частное получившуюся величину:
Пример решен, можно проверить правильность путем умножения: 62X6=372.
Как объяснить деление с остатком?
Иногда разделить на равные доли невозможно. Легче всего объяснить такую ситуацию школьнику на несложной задаче. Например:
В группе 8 учеников, на обед им выдали 18 ватрушек на подносе. Когда каждый получит по 2 ватрушки (18:8=2 и ост. 2), на подносе останутся лишние 2 штуки. Это и есть остаток.
Решение столбиком с остатком, по математическому правилу, записывается точно так же, как и без него. Разница лишь в том, что в конце остаток будет. В этом варианте правильно прописать количество целых единиц и количество единиц в остатке (пример: 4 целых и 9 в остатке).
Обучение школьника должно проходить поэтапно, от простых примеров к более сложным. Если нет понимания простых действий в делении, значит, нужно повторить информацию еще раз. Постепенно решение примеров начнет происходить быстрее и увереннее. Главное – поверить в силы маленького человека, быть терпеливым, и тогда делить числа методом столбца станет интересным занятием для школьника.
Источник
Сложение натуральных чисел столбиком: правило, примеры
Сложение столбиком, или как еще говорят, сложение в столбик — это метод, широко используемый для сложения многозначных натуральных чисел. Суть этого метода в том, что сложение двух и более многозначных чисел сводится к нескольким простым операциям сложения однозначных чисел.
В статье подробно расписано, как выполнять сложение двух и большего количества многозначных натуральных чисел. Дано правило сложения чисел в столбик и примеры решения с разбором всех самых характерных ситуаций, возникающих при сложении чисел в столбик.
Сложение двух чисел в столбик: что нужно знать?
Прежде чем мы перейдем непосредственно к операции сложения в столбик, рассмотрим некоторые важные моменты. Для быстрого освоения материала желательно:
Знать и хорошо ориентироваться в таблице сложения. Так, при проведении промежуточных вычислений, вам не придется тратить время и постоянно обращаться к таблице сложения.
Помнить свойства сложения натуральных чисел. Особенно свойства, связанные со сложением нулей. Напомним их кратко. Если одно из двух слагаемых равно нулю, то сумма равна другому слагаемому. Сумма двух нулей есть нуль.
Знать правила сравнения натуральных чисел.
Знать, что такое разряд натурального числа. Напомним, что разряд — это позиция и значение цифры в записи числа. Разряд определяет значение цифры в числе — единицы, десятки, сотни, тысячи и т.д.
Сложение двух натуральных чисел в столбик
Опишем алгоритм сложения чисел столбиком с использованием конкретного примера. Пусть мы складываем числа 724980032 и 30095 . Сначала следует записать эти числа по правилам записи сложения в столбик.
Числа записываются одно под другим, цифры каждого разряда располагаются, соответственно, одна под другой. Слева ставим знак «плюс», а под числами проводим горизонтальную линию.
Теперь мысленно разбиваем запись на столбики по разрядам.
Все, что остается сделать — сложить однозначные числа в каждом столбике.
Начинаем с крайнего правого столбика (разряд единиц). Складываем числа, и под чертой записываем значение единиц. Если при сложении значение десятков в результате получилось отличным от нуля, запоминаем это число.
Складываем цифры второго столбика. К результату прибавляем число десятков, которое мы запомнили на предыдущем шаге.
Повторяем весь процесс с каждым столбиком, вплоть до крайнего левого.
Данное изложение — упрощенная схема алгоритма сложения натуральных чисел столбиком. Теперь, когда мы разобрались с сутью метода, рассмотрим каждый шаг подробно.
Сначала складываем единицы, то есть числа в правом столбце. Если у нас получилось число, меньшее чем 10 , записываем его в том же столбике и переходим к следующему. Если же результат сложения больше или равен 10 , то под чертой в первом столбике записываем значение разряда единиц, а значение разряда десятков — запоминаем. Например, получилось число 17 . Тогда записываем число 7 — значение единиц, а значение десятков — 1 — запоминаем. Обычно говорят: «семь пишем, один в уме».
В нашем примере, при сложении чисел первого столбика, мы получаем число 7 .
7 10 , поэтому записываем это число в разряд единиц результата, а запоминать нам ничего не нужно.
Далее складываем числа в следующем столбце, то есть в разряде десятков. Проводим те же действия, только к сумме нужно прибавить число, которое мы держали в уме. Если сумма получилась меньше 10 , просто записываем число под вторым столбиком. Если же результат больше или равен 10 , записываем во втором столбике значение единиц этого числа, а цифру из разряда десятков запоминаем.
В нашем случае мы складываем числа 3 и 9 , в результате имеем 3 + 9 = 12 . На предыдущем шаге мы ничего не запоминали, поэтому к этому результату ничего прибавлять не нужно.
12 > 10 , поэтому во втором столбике записываем цифру 2 из разряда единиц, а цифру 1 из разряда десятков держим в уме. Для удобства можно записать это число над следующим столбиком другим цветом.
Переходя к третьему, четвертому и так далее столбику повторяем действие, пока столбики не закончатся.
В третьем столбике сумма цифр равна нулю ( 0 + 0 = 0 ). К этой сумме прибавляем то число, которое ранее держали в уме, и получаем 0 + 1 = 1 . записываем:
Переходя к следующему столбцу также складываем 0 + 0 = 0 и записываем в результате 0 , так как на предыдущем шаге мы ничего не запоминали.
Следующий шаг дает 8 + 3 = 11 . В столбике записываем цифру 1 из разряда единиц. Цифру 1 из разряда десятков держим в уме и переходим к следующему столбцу.
Этот столбик содержит только одно число 9 . Если бы у нас не было в памяти числа 1 , мы бы просто переписали число 9 под горизонтальную черту. Однако, учитывая, что не предыдущем шаге мы запомнили число 1 , нужно сложить 9 + 1 и записать результат.
Поэтому, под горизонтальной чертой мы записываем 0 , а единицу снова держим в уме.
Переходя к следующему столбику складываем 4 и 1 , результат пишем под чертой.
Следующий столбик содержит только число 2 . Так на предыдущем шаге мы ничего не запоминали, просто переписываем это число под черту.
Также поступаем и с последним столбиком, содержащим число 7 .
Столбцов более нет, и в памяти также ничего нет, поэтому можно сказать, что операция сложения в столбик окончена. Число, записанное под чертой — результат сложения двух верхних чисел.
Чтобы разобраться со всеми возможными нюансами, рассмотрим еще несколько примеров.
Пример 1. Сложение натуральных чисел столбиком
Сложим два натуральных числа: 21 и 36 .
Сначала запишем эти числа по правилу записи при сложении столбиком:
Начав с правого столбика, приступаем к сложению чисел.
Так как 7 10 , записываем 7 под чертой.
Складываем числа во втором столбике.
Так как 5 10 , а в памяти с предыдущего шага ничего нет, записываем результат
В памяти и в следующем столбике чисел более нет, сложение закончено. 21 + 36 = 57
Сколько будет 47 + 38 ?
7 + 8 = 15 , поэтому запишем 5 в первом столбике под чертой, а 1 будем держать в уме.
Теперь складываем значения из разряда десятков: 4 + 3 = 7 . Не забываем о единице и прибавляем ее к результату:
7 + 1 = 8 . Полученное число записываем под чертой.
Это и есть результат сложения.
Теперь возьмем два трехзначных числа и выполним их сложение.
3 + 9 = 12 ; 12 > 10
Записываем 2 под чертой, 1 держим в уме.
8 + 5 = 13 ; 13 > 10
Складываем 13 и запомненную единицу, получаем:
13 + 1 = 14 ; 14 > 10
Записываем 4 под чертой, 1 держим в уме.
Не забываем, что на предыдущем шаге мы запомнили 1 .
Записываем 0 под чертой, 1 держим в уме.
В последнем столбике переносим единицу, которую мы запомнили ранее, под черту, и получаем окончательный результат сложения.
Найдем сумму чисел 56927 и 90 .
Как всегда, сначала записываем условие:
Записываем 7 под чертой и переходим к следующему столбику.
2 + 9 = 11 ; 11 > 10
Записываем 1 под чертой, 1 держим в уме и переходим к следующему столбику.
Записываем 0 под чертой, 1 держим в уме и переходим к следующему столбику.
Столбик содержит одно число 6 . Складываем его с запомненной единицей.
Записываем 7 под чертой и переходим к следующему столбику.
Столбик содержит одно число 5 . Переносим его под черту и заканчиваем операцию сложения.
56927 + 90 = 57017
Следующий пример приведем без промежуточных результатов и пояснений, как образец записи сложения в столбик на практике.
Пример 5. Сложение натуральных чисел столбиком
Ответ: 5807 + 4137502 = 4143309
Сложение столбиком трех и более чисел. Что нужно знать?
Во первых, нужно усвоить всю информацию, уже изложенную в этой статье. Во вторых, также помним, что нули не влияют на результат сложения, и сколько бы не было в выражении слагаемых нулей, их сумма будет равна нулю.
Этапы сложения в столбик трех и более чисел аналогичны этапам из уже рассмотренных примеров с двумя числами. Обратимся к практике и поясним ход решения.
Пример 5. Сложение трех натуральных чисел столбиком
Сложим столбиком числа 274 , 3082 и 201297 .
Сначала делаем запись:
Начинаем с первого столбика, справа налево.
4 + 2 + 7 = 13 ; 13 > 10
3 пишем, 1 в уме. Переходим ко второму столбику.
7 + 8 + 9 = 24 ; 24 + 1 = 25 ; 25 > 10
5 пишем, 2 в уме. Переходим к третьему столбику.
2 + 0 + 2 = 4 ; 4 + 2 = 6 ; 6 10
6 пишем, и ничего не запоминаем. Переходим к четвертому столбику.
4 пишем, и ничего не запоминаем. Переходим к пятому столбику. Пятый и шестой столбики содержат по одному числу, в уме с предыдущих шагов мы ничего не держим, поэтому просто переносим числа из последних двух столбиков под черту.
Ответ: 274 + 3082 + 201297 = 204653
Совет: при сложении трех и большего количества чисел в столбик, если вычисления выходят слишком громоздкими, бывает удобнее последовательно сложить два числа, затем еще два и так далее.