Как решать неравенства с двумя переменными графическим способом

Неравенство с двумя переменными и его решение: значение, список примеров

Содержание:

Линейное неравенство, имеющее две переменных; его функция имеет общий вид ах + bу + с меньше нулевого значения или больше 0. В качестве переменных выступают у, х. Для обозначения некоторых чисел используются буквы а, b, с. Решение неравенств с двумя переменными графическим способом предполагает использование плоскости координат. Задача – найти пару чисел, которая сделает пример верным равенством.

Неравенство с двумя неизвестными – сложный линейный пример, требующий построения графика. В большинстве случаев имеет множество вариантов решения. Например, заданы числа 2 и 1, необходимо решить выражение 5х + 2у > 4. Для этого следует подставить данные коэффициенты в пример. В итоге получается: 5*2 + 2*1 > 4, 10 + 2 больше 4. Решение допустимое.

Более легкий способ решить уравнение – построить графическую координатную плоскость. Внешний вид решения имеет определенную фигуру.

График неравенства с двумя переменными – решение

Функция имеет следующее определение: 3х — 2у + 6 > 0. Нужно определить точки на плоскости, которые подойдут для решения примера. Если 3х -2у + 6 > 0 приравнять к нулю, получится 3х — 2у + 6 = 0. Это стандартное обозначение прямой, проходящей через две области: -2,0 и 0,-3. Относим коэффициенты к области М1(Х1,У1). Эта зона заштриховывается на плоскости, она находится под 3х — 2у + 6 = 0 – прямой.

Коэффициенты М2(Х22) попадают на прямую. Отсюда следует: 2у2 — 3х1 — 6 = 0, 2у1 — 3х1 — 6 0. Изначально строится прямая. В качестве решения выступает набор точек, расположенных над или под прямой. Чтобы понять, какая плоскость является ответом, необходимо выполнить подстановку значений в уравнение.

Графическое решение неравенств с двумя переменными – пример

Большинство неравенств с двумя неизвестными решаются графически. Необходимо выбрать, какой метод для поиска решения лучше применить. Координатная плоскость позволяет сделать рисунок, наглядно увидеть ответ. Задача – поиск двух коэффициентов, удовлетворяющих требованиям примера. Рассмотрим выражение 2у + 3х

Источник

Системы неравенств с двумя переменными

п.1. Алгоритм графического решения системы неравенств с двумя переменными

Найти на координатной плоскости множество решений системы неравенств: $$ \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. $$ Множество решений – сегмент круга, отсекаемый отрезком AB. Сам отрезок в множество решений не входит.

п.2. Примеры

Пример 1. Найдите на координатной плоскости множество решений системы неравенств.

Выразим y(x) в явном виде

Строим прямые, заштриховываем области над ними, находим пересечение.

Выразим y(x) в явном виде

Заштриховываем область под первой параболой и над второй параболой.

Выразим y(x) в явном виде

Строим гиперболу и прямую. Заштриховываем области под гиперболой и над прямой.

Заштриховываем области вне первой окружности и внутри второй.

Находим пересечение – кольцо.

Пример 2. Задайте системой неравенств треугольник с вершинами
A(2; 3), B(4; 4), C(3; 0)
Уравнения прямых, на которых лежат стороны треугольника:

Источник

Линейные неравенства с двумя переменными и их системы

Линейное неравенство с двумя переменными и его решение

Неравенство вида ax+by $ \begin \lt \\ \gt \\ \le \\ \ge \end $ c , где a, b, c — данные числа, называется линейным неравенством с двумя переменными x и y.

Например: $2x+5y \lt 6; -x+1, 5y \ge 0; \frac<1> <2>x-8y \gt 7$

Решением неравенства с двумя переменными называется упорядоченная пара значений переменных (x,y), обращающая это неравенство в истинное выражение.

Например: для неравенства $2x+5y \lt 6$

пара (-1;-2) является решением, т.к. $2\cdot(-1)+5 \cdot (-2) = -12 \lt 6$ – истина

пара (1;2) не является решением, т.к. $2\cdot1+5\cdot2=12 \not\lt 6$ – ложь

Графическое представление линейного неравенства с двумя переменными

Графическим представлением линейного неравенства с двумя переменными вида ax+by$ \begin \lt \\ \gt \\ \le \\ \ge \end $ c является полуплоскость с границей ax+by = c .

Для строгого неравенства граница не входит в представление, для нестрогого неравенства – входит.

Графическое решение системы линейных неравенств с двумя переменными

Графическим решением системы линейных неравенств с двумя переменными является пересечение их графических представлений на плоскости.

Пересечение двух множеств – это множество, которому принадлежат только те элементы, которые одновременно входят в оба множества.

Пересечение обозначают знаком $\cap$.

Найдём графическое решение системы линейных неравенств:

Решением является треугольник ABC, где A(-1;2), B(0;4), C(2;0).

Примеры

Пример 1. Найдите графическое представление линейного неравенства:

Представление – полуплоскость под границей, сама граница не входит

Представление – полуплоскость под границей, сама граница входит

Представление – полуплоскость справа от границы, сама граница входит

Представление – полуплоскость под границей, сама граница не входит

Пример 2*. Найдите графическое решение системы линейных неравенств:

Решением является квадрат ABCD, где A(-3;-1), B(0;2), C(3;1), D(0;-4)

Пример 3*. Автоперевозчику поступил заказ на перевозку 30 т груза. У него есть 5 машин грузоподъёмностью 3 т и 5 машин грузоподъёмностью 5 т.

Расход топлива для каждого типа грузовиков соответственно 20 и 24 л, общий расход не должен превышать 170 л.

Подберите состав грузовиков для выполнения заказа.

Пусть x — количество грузовиков по 3т, y – по 5т.

По условию задачи:

$$ <\left\< \begin 3x+5y \ge 30 \\ 20x+24y \le 170 \\ x \le 5 \\ y \le 5 \end \right.> $$

Решением системы неравенств является заштрихованный треугольник. Единственным целочисленным решением является точка A(2;5) Таким образом, для выполнения заказа нужно 2 грузовика по 3т и 5 грузовиков по 5т.

Их суммарная грузоподъёмность: $3 \cdot 2+5 \cdot 5 = 31 \gt 30$ достаточна

Суммарный расход топлива: $ 20 \cdot 2+24 \cdot 5 = 160 \lt 170 $ не превышает лимит

Ответ: 2 грузовика по 3т и 5 грузовиков по 5т

Источник

Графическое решение неравенств

Приближённое решение неравенств.

Графическое решение неравенств с одним неизвестным.

Графическое решение систем неравенств с двумя неизвестными.

Графическое представление функций позволяет приближённо решать неравенства с одним неизвестным и системы неравенств с одним и двумя неизвестными. Чтобы решить графически неравенство с одним неизвестным, необходимо перенести все его члены в одну часть, т. e . привести к виду:

и построить график функции y = f ( x ). После этого, используя построенный график, можно найти нули функции (см. выше), которые разделят ось Х на несколько интервалов. Теперь на основе этого определим интервалы x , внутри которых знак функции соответствует знаку неравенства. Например, нули нашей функции: a и b ( рис.30 ). Тогда из графика очевидно, что интервалы, внутри которых f ( x ) > 0: x a и x > b ( они выделены жирными стрелками ). Ясно, что знак > здесь условный; вместо него может быть любой другой:

Чтобы решить графически систему неравенств с одним неизвестным, нужно перенести в каждом из них все члены в одну часть, т. e . привести неравенства к виду:

и построить графики функций y = f ( x ), y = g ( x ) , . , y = h ( x ). Каждое из этих неравенств решается графическим методом, описанным выше. После этого нужно найти пересечение решений всех неравенств, т. e . их общую часть.

П р и м е р . Решить графически систему неравенств:

Р е ш е н и е . Сначала построим графики функций y = — 2 / 3 x + 2 и

Решением первого неравенства является интервал x > 3, обозначенный на рис.31 чёрной стрелкой; решение второго неравенства состоит из двух интервалов: x — 1 и x > 1, обозначенных на рис.31 серыми стрелками.

Из графика видно, что пересечением этих двух решений является интервал x > 3. Это и есть решение заданной системы неравенств.

Чтобы решить графически систему двух неравенств сдвумя неизвестными, надо:

1) в каждом из них перенести все члены в одну часть, т. e . привести

нера венства к виду:

2) построить графики функций, заданных неявно: f ( x , y ) = 0 и g ( x , y ) = 0;

3) каждый их этих графиков делит координатную плоскость на две части:

в одной из них неравенство справедливо, в другой – нет; чтобы решить

графически каждое из этих неравенств, достаточно проверить

справедливость неравенства в одной произвольной точке внутри любой

части плоскости; если неравенство имеет место в этой точке, значит

эта часть координатной плоскости является его решением, если нет – то

решением является противоположная часть плоскости ;

4) решением заданной системы неравенств является пересечение

(общая область) частей координатной плоскости.

П р и м е р . Решить систему неравенств:

Р е ш е н и е . Сначала строим графики линейных функций: 5 x – 7 y = — 11 и

2 x + 3 y = 10 ( рис.32 ). Для каждой из них находим полуплоскость,

внутри которой соответствующее заданное неравенство

справедливо. Мы знаем, что достаточно проверить справедливость

неравенства в одной произвольной точке области; в данном

случае легче всего использовать для этого начало координат O ( 0, 0 ).

Подставляя его координаты в наши неравенства вместо x и y ,

получим: 5 · 0 – 7 · 0 = 0 > — 11, следовательно, нижняя

полуплоскость ( жёлтого цвета ) является решением первого

неравенства; 2 · 0 + 3 · 0 = 0 неравенство

имеет своим решением также нижнюю полуплоскость ( голубого

цвета ). Пересечение этих полуплоскостей ( область цвета бирюзы )

является решением нашей системы неравенств.

Источник

Как решать неравенства с двумя переменными графическим способом

  • Главная
  • Обучение
  • Предварительный просмотр
  • Мероприятия / ВИШР
  • Обучение
  • Тренажер ЕГЭ
  • Учебные пособия
  • Игры
  • 120 лет ТПУ. Викторина онлайн
  • Университетские субботы
  • Высшая инженерная школа России
Математика

2.2.10. Изображение на координатной плоскости множества решений неравенств с двумя переменными и их систем

Графическое решение неравенства с двумя переменными

Часто приходится изображать на координатной плоскости мно­жество решений неравенства с двумя переменными. Решением неравенства с двумя переменными называют пару значений этих переменных, которая обращает данное неравенство в верное числовое неравенство.

Изобразим на координатной плоскости множество решений нера­венства + Зх 2 + 2х + у 2 — 4у + 1 > 0 на координатной плоскости.

Построим сначала график уравнения х 2 + 2х + у 2 — 4у + 1 = 0. Вы­делим в этом уравнении уравнение окружности: (х 2 + 2х + 1) + (у 2 — 4у + 4) = 4, или (х + 1) 2 + (у — 2) 2 = 2 2 .

Это уравнение окружности с центром в точке 0 (-1; 2) и радиусом R = 2. Построим эту окружность.

Так как данное неравенство строгое и точки, лежащие на самой окружности, неравенству не удовлетворяют, то строим окружность пунктирной линией.

Легко проверить, что координаты центра О окружности данному неравенству не удовлетворяют. Выражение х 2 + 2х + у 2 — 4у + 1 ме­няет свой знак на построенной окружности. Тогда неравенству удовлетворяют точки, расположенные вне окружности. Эти точки заштрихованы.

Пример

Изобразим на координатной плоскости множество решений нера­венства

(у — х 2 )(у — х — 3) 2 )(у — х — 3) = 0. Им яв­ляется парабола у = х 2 и прямая у = х + 3. Построим эти линии и отметим, что изменение знака выражения (у — х 2 )(у — х — 3) проис­ходит только на этих линиях. Для точки А (0; 5) определим знак это­го выражения: (5- 3) > 0 (т. е. данное неравенство не выполняется). Теперь легко отметить множество точек, для кото­рых данное неравенство выполнено (эти области заштрихованы).

Алгоритм решения неравенств с двумя переменными

1. Приведем неравенство к виду f (х; у) 0; f (х; у) ≤ 0; f (х; у) ≥ 0;)

2. Записываем равенство f (х; у) = 0

3. Распознаем графики, записанные в левой части.

4. Строим эти графики. Если неравенство строгое (f (х; у) 0), то — штрихами, если неравенство нестрогое (f (х; у) ≤ 0 или f (х; у) ≥ 0), то — сплошной линией.

5. Определяем, на сколько частей графики разбили координатную плоскость

6. Выбираем в одной из этих частей контрольную точку. Определяем знак выражения f (х; у)

7. Расставляем знаки в других частях плоскости с учетом чередования (как по методу интервалов)

8. Выбираем нужные нам части в соответствии со знаком неравенства, которое мы решаем, и наносим штриховку

Источник

Читайте также:  Макароны звездочка для рыбалки способ приготовления
Оцените статью
Разные способы