Как решать графический способ решения систем уравнений 9 класс

Системы уравнений с двумя переменными

п.1. Понятие системы уравнений с двумя переменными и её решения

п.2. Графический метод решения системы уравнений с двумя переменными

Поскольку каждое из уравнений с двумя переменными можно изобразить в виде графика на плоскости, графический метод решения систем таких уравнений достаточно удобен.

п.3. Примеры

Пример 1. Решите графическим способом систему уравнений:
а) \( \left\< \begin < l >\mathrm & \\ \mathrm <4x+3y=0>& \end\right. \)
\( \mathrm \) – окружность с центром в начале координат
\( \mathrm <4x+3y=0>\) – прямая \( \mathrm \)

Система имеет два решения (–3; 4) и (3; –4)
Ответ: <(–3; 4) ; (3; –4)>.

б) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
\( \mathrm \) – гипербола \( \mathrm \)
y – x = 4 – прямая y = x + 4

Система имеет два решения (–5; –1) и (1; 5)
Ответ: <(–5; –1) ; (1; 5)>.

в) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
x 2 + y = 1 – парабола y = –x 2 + 1
x 2 – y = 7 – парабола y = x 2 – 7

Система имеет два решения (–2; –3) и (2; –3)
Ответ: <(–2; –3) ; (2; –3)>.

г) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
xy = 1 – гипербола \( \mathrm \)
x 2 + y 2 = 2 – окружность с центром в начале координат, радиусом \( \mathrm<\sqrt<2>> \)

Система имеет два решения (–1; –1) и (1; 1)
Ответ: <(–1; –1) ; (1; 1)>.

Пример 2*. Решите графическим способом систему уравнений
a) \( \left\< \begin < l >\mathrm & \\ \mathrm <\frac1x-y=1>& \end\right. \)
x 3 – y = 1 – кубическая парабола y = x 3 – 1, смещённая на 1 вниз.
\( \mathrm <\frac1x-y=1>\) – гипербола \( \mathrm \), смещённая на 1 вниз

Система имеет два решения (–1; –2) и (1; 0)
Ответ: <(–1; –2) ; (1; 0)>.

б) \( \left\< \begin < l >\mathrm <|x|+|y|=2>& \\ \mathrm & \end\right. \)
|x| + |y| = 2 – квадрат с диагоналями 4, лежащими на осях
x 2 + y 2 = 4 – окружность с центром в начале координат, радиусом 2

Система имеет четыре решения (2; 0), (0; 2) , (–2; 0) и (0; –2)
Ответ: <(2; 0) ; (0; 2) ; (–2; 0) ; (0; –2)>.

в) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
y – x 2 = 4x + 6 – парабола y = (x 2 + 4x + 4) + 2 = (x + 2) 2 + 2, ветками вверх, смещённая на 2 влево и на 2 вверх
y + |x| = 6 – ломаная, y = –|x| + 6. Для x > 0, y = –x + 6, для x 0, y = x, для x

Источник

Графический способ решения систем уравнений

Урок 16. Алгебра 9 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Читайте также:  Способы решения уравнений для егэ

Получите невероятные возможности

Конспект урока «Графический способ решения систем уравнений»

Графиками таких уравнений могут являться различные линии.

Решить систему — значит найти все её решения или доказать, что их нет.

Решением системы называется пара значений переменных, обращающая каждое уравнение системы уравнений с двумя переменными в верное равенство.

Нужно проверить, обращают ли пара значений уравнения системы в верные равенства.

1. Первая пара (-2, 1). Подставим их в систему:

Первое уравнение обратилось в верное равенство, а второе — нет. Значит, пара чисел (-2;1) не является решением данной системы.

2. Вторая пара (1;-2). Поставим эти значения в систему:

Получаем два верных равенства. Значит, пара чисел (1;-2) является решением данной системы.

Решить систему двух уравнений:

Изобразим график системы:

Видим, что графики пересеклись в двух точках. Их координаты и являются решением системы. Данная система имеет два решения: (0;3) и (3;0).

Проверим, действительно ли они являются решениями. Подставим эти значения в систему:

Проверка необходима потому, что графический метод позволяет получить приближённые значения. Иногда их сложно указать точно.

Получили две пары значений: (0;3) и (3;0).

Решить систему уравнений:

Изобразим график системы:

Точку пересечения этих графиков имеет координаты (0;1). Подставим значения в систему:

Получили верные равенства. Значит, решением данной системы является пара чисел (0;1).

Решить систему двух уравнений:

Изобразим график системы:

Видим две точки пересечения. Их координаты трудно указать точно. Поэтому прежде чем записать ответ, полученные значения нужно подставить в систему:

Решением системы будут две пары чисел(2,5;2,5) и (6,5;6,5).

Источник

Графический способ решения систем уравнений (9 класс)

Выбранный для просмотра документ графический способ решения систем уравнений.ppt

Описание презентации по отдельным слайдам:

Французский писатель Анатоль Франс «Учиться можно только весело … Чтобы переваривать знания, надо поглощать их с аппетитом»

Тест Проанализируйте уравнения. Выберите, уравнение, соответствующее данному графику:

y=x+1 y+1=0 y=1 xy=1 2

xy=-1 x+y=2 х²+y²=25 xy=1 3

Проверь себя: y=-x²+1 у = — 1 xy=1 у=|х| х²+y²=1

Решить систему уравнений

Графический способ решения систем уравнений.

Задание 1. Решить графически систему уравнений. 1. 2. Построим графики функций в одной системе координат. 3. Составим таблицы значений функций. х -3 -2 -1 0 1 2 3 у 9 4 1 0 1 4 9 х 0 -3 у 3 -3

Задание 1. Ответ: ( -1; 1); (3; 9) А В х 0 -3 у 3 -3 х -3 -2 -1 0 1 2 3 у 9 4 1 0 1 4 9

Задание 2. Решить графически систему уравнений. 1. 2. Построим графики функций в одной системе координат. 3. Составим таблицы значений функций. х -8 -4 -2 -1 1 2 4 8 у -1 -2 -4 -8 8 4 2 1 х 0 -3 у -3 0

Задание 2. Ответ: решений нет х -8 -4 -2 -1 1 2 4 8 у -1 -2 -4 -8 8 4 2 1 х 0 -3 у -3 0

Задание 3. Решить графически систему уравнений. Подробно х 0 3 у 3 -3 х -4 -2 -1 1 2 4 у 0,5 1 2 -2 -1 -0,5

х – любое действительное число. 1. 2. Графиком функции является парабола, ветви которой направлены вверх. a > 0 3. Найдём координаты вершины параболы 4. Дополнительные точки: М ( 2; -1) х 0 1 2 3 4 5 у 3 0 -1 0 3 8

Читайте также:  Иерархический способ организации живой материи

Решить графически системы уравнений 1 2 3

Самостоятельно. Решить графически систему уравнений. Проверка (2) Ответ: ( -3; 4); (3; 4); (-1; 4,9); (1; 4,9)

Самостоятельно. Решить графически систему уравнений. Проверка (2) Ответ: решений нет

Самостоятельно. Решить графически систему уравнений. Проверка (2) Ответ: (2; 4)

Рефлексия: Мизинец – Мне сейчас … Безымянный – Я хочу … Средний – Я буду… Указательный – Чего я жду от урока… Большой – Мне интересно …

Домашнее задание: Выполнить дома: №418, №421 (а,б)

Выбранный для просмотра документ урок в 9 а классе Графический способ решения систем уравнений.docx

Тип урока: урок нового знания

Тема урока: Графический способ решения систем уравнений

— дидактические: организация деятельности учащихся по восприятию, осмыслению, первичному запоминанию и закреплению знаний по теме « Графический способ решения систем уравнений »; обобщение и углубление знаний, умений учащихся применять графические способы решения уравнений и систем уравнений и их комбинаций;

— развивающие: развитие логического мышления, культуры графического построения, наблюдательности, памяти, умения анализировать, сравнивать и делать выводы;

— воспитательные: средствами учебного занятия создать условия, способствующие формированию умения искать пути выхода из затруднения.

— предметные: освоение учащимися новой темы « Графический способ решения систем уравнений » и применение её при решении задач;

— метапредметные (регулятивные – Р, коммуникативные – К, познавательные – П): умение определять понятия, создавать обобщения, устанавливать аналогии, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение и делать выводы;

— личностные (Л) – установление учащимися связи между целью учебной деятельности и ее мотивом.

Оборудование: м ультимедийный проектор, экран, компьютер, электронные презентации для устной работы и изучения новой темы, выполненная в Microsoft Power Point,

(указать цель на каждом этапе)

(с указанием форм деятельности)

Формируемые УУД (конкретные)

1. Мотивация к учебной деятельности

выработка на личностно значимом уровне положительного самоопределения ученика к деятельности на уроке

Французский писатель Анатоль Франс однажды заметил: «Учиться можно только весело … Чтобы переваривать знания, надо поглощать их с аппетитом». Так вот, давайте сегодня на уроке будем следовать этому совету писателя, будем активны, внимательны, будем поглощать знания с большим желанием.

Перед вами лежит листок бумаги. Обведите на нём свою руку. Продолжите предложения, характеризующие ваше эмоциональное состояние в данный момент:

Мизинец – Мне сейчас …

Безымянный – Я хочу …

Средний – Я буду…

Указательный – Чего я жду от урока…

Большой – Мне интересно …

Организация рабочего места, постановка перед собой целей

-действовать, запоминать, усваивать

К: планирование учебного сотрудничества

2. Актуализация знаний (5-7 мин) Цель: формулирование цели и темы урока

Повторение: Что называется графиком уравнения с двумя переменными?

В тетрадях записать уравнение, которое соответствует данному графику.

Взаимопроверка: обменяться тетрадями и проверить. Слайд 8

Решить систему уравнений:

Уравнения какой степени входят в систему уравнений?

Читайте также:  Способы современного хранения информации

В 7 классе мы рассматривали системы уравнений первой степени с двумя переменными. Теперь займёмся решением систем, составленных из двух уравнений второй степени или из одного уравнения первой степени, а другого второй степени.

Вспомним, что решением системы двух уравнений с двумя переменными является пара чисел, обращающая каждое уравнение системы в верное равенство. Решить систему – значит найти все её решения или доказать, что решений нет.

Какие способы решения систем уравнений вы знаете?

Тема нашего урока «Графический способ решения систем уравнений»

Перед вами стоит задача – показать свои знания и умения по решению систем уравнений с помощью графиков.

Источник

Как решать графический способ решения систем уравнений 9 класс

Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться , такую группу уравнений мы называем системой.

Объединяем уравнения в систему с помощью фигурной скобки:

Графический метод

Недаром ответ записывается так же, как координаты какой-нибудь точки.

Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.

Например, построим графики уравнений из предыдущего примера.

Пример 1

Для этого сперва выразим y y y в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно x x x ):

Для того чтобы графически решить систему уравнений с двумя переменными нужно:

1) построить графики уравнений в одной системе координат;
2) найти координаты точек пересечения этих графиков (координаты точек пересечения графиков и есть решения системы);

Разберем это задание на примере.

Решить графически систему линейных уравнений.

Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.

Пример 2

Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может:

а) иметь единственное решение;

б) не иметь решений;

в) иметь бесконечное множество решений.

2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.

Пример 3

Графическое решение системы

Пример 4

Решить графическим способом систему уравнений.

Графиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.

Прямую y=2x-3 провели через точки (0; -3) и (2; 1).

Прямую y=x+1 провели через точки (0; 1) и (2; 3).

Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.

Пример 5

Выражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.

Прямую y=2x+9 проводим через точки (0; 9) и (-3; 3). Прямую y=-1,5x+2 проводим через точки (0; 2) и (2; -1).

Наши прямые пересеклись в точке В(-2; 5).

ОБЯЗАТЕЛЬНО: Познакомимся с видео, где нам объяснят как решаются системы линейных уравнений графическим способом. РАССКАЖУТ, КАК РЕШАТЬ СИСТЕМЫ ГРАФИЧЕСКИ.

Видео YouTube

Источник

Оцените статью
Разные способы