Как решать дроби легкие способы

Обыкновенные дроби

О чем эта статья:

Доля — это каждая равная часть, из суммы которых состоит целый предмет.

Для примера возьмем два мандарина. Когда мы их почистим, то получим в каждом мандарине разное количество долек или долей. В одном может быть 6, а в другом — целых 9. Размеры долей у каждого мандарина тоже разные.

У каждой доли есть свое название: оно зависит от количества долей в конкретном предмете. Если в мандарите шесть долей — каждая из них будет определяться, как одна шестая от целого.

  • Половина — одна вторая доля предмета или 1/2.
  • Треть — одна третья доля предмета или 1/3.
  • Четверть — одна четвертая доля предмета или 1/4.

Понятие доли можно применить не только к предметам, но и величинам. Так, например, картина занимает четверть стены — при этом ее ширина треть метра.

Чтобы быстрее запомнить соотношения частей и целого, можно использовать наглядную табличку:

Понятие дроби

Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которой можно представить число. Есть два формата записи:

  • обыкновенный вид — 1/2 или a/b,
  • десятичный вид — 0,5.

Виды дробей:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 — 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x — y). Значение дроби зависит от данных значений букв.

Какие еще бывают дроби:

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3\5.

Выделение целой части из неправильной дроби — это запись неправильной дроби в виде суммы натурального числа и правильной дроби. Например, 11/5 = 2 + 1/5.

Как устроена обыкновенная дробь

Обыкновенная дробь — это запись вида m/n, где m и n любые натуральные числа.

Такие дроби записываются с помощью двух натуральных чисел и горизонтальной черты, которая называется чертой дроби. Иногда ставится не горизонтальная черта, а косая.

Числитель обыкновенной дроби m/n — это натуральное число m, которое стоит над чертой. Числитель это делимое — то, что мы делим.

Знаменатель обыкновенной дроби m/n — натуральное число n, которое стоит под чертой. Знаменатель это делитель — то, на сколько делим.

Черта между числителем и знаменателем — символ деления.

Равные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых справедливо равенство: a * d = b * c. Пример равных дробей: 1/2 и 2/4, так как 1 * 4 = 2 * 2.

Неравные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых равенство: a * d = b * c не является верным.

Как устроена десятичная дробь

В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. Выходит, что десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

Свойства дробей

Основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то получится дробь, равная данной. Формула выглядит так:

где a, b, k — натуральные числа.

Основные свойства
  1. Дробь не имеет значения, при условии, если делитель равен нулю.
  2. Дробь равна нулю, если числитель равен нулю, а знаменатель — нет.
  3. Две дроби a/b и c/d называются равными, если a * d = b * c.

Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:

  • Целая часть десятичной дроби равна целой части смешанной дроби. Если числитель меньше знаменателя, то целая часть равна нулю.
  • Дробная часть десятичной дроби содержит те же цифры, что и числитель этой же дроби в обыкновенном виде.
  • Количество цифр после запятой зависит от количества нулей в знаменателе обыкновенной дроби. То есть 1 цифра — делитель 10, 4 цифры — делитель 10000.

У нас есть отличные курсы по математике для учеников с 1 по 11 классы, записывайтесь!

Действия с дробями

С дробями можно выполнять те же действия, что и с обычными числами: складывать, вычитать, умножать и делить. А еще дроби можно сокращать и сравнивать между собой. Давайте попробуем.

Сравнение дробей

Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше.

Сравним 1/5 и 4/5. Как рассуждаем:

  1. В обеих дробях знаменатель равен 5.
  2. В первой дроби числитель равен 1, во второй дроби равен 4.

Чтобы сравнить дроби с разными знаменателями, нужно привести дроби к общему знаменателю. А после приведения дробей к общему знаменателю, можно применить правило сравнения дробей с одинаковыми знаменателями.

Пример. Сравнить 2/7 и 1/14.

  1. Приведем дроби к общему знаменателю:
  2. Сравним дроби с одинаковыми знаменателями:

Важно запомнить: любая неправильная дробь больше любой правильной. Потому что неправильная дробь всегда больше или равна 1, а правильная дробь всегда меньше 1.

Чтобы сравнить дроби с разными числителями и знаменателями, нужно:

  • привести дроби к наименьшему общему знаменателю (НОЗ);
  • сравнить полученные дроби.

Чтобы привести дроби к наименьшему общему знаменателю, нужно:

  1. Найти наименьшее общее кратное (НОК) знаменателей дробей, которое станет их общим знаменателем.
  2. Разделить общий знаменатель на знаменатель данных дробей, то есть найти для каждой дроби дополнительный множитель.
  3. Умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.

Сокращение дробей

Сокращение дроби — это деление числителя и знаменателя дроби на одно и то же натуральное число. Сократить дробь значит сделать ее короче и проще для восприятия. Например, дробь 1/3 выглядит намного проще и красивее, чем 27/81.

Сокращение дроби выглядит так: зачеркивают числитель и знаменатель, а рядом записывают результаты деления числителя и знаменателя на одно и то же число.

В этом примере делим обе части дроби на двойку.

Можно никуда не спешить и сокращать дроби последовательно, в несколько действий.

Сложение и вычитание дробей

При сложении и вычитании дробей с одинаковыми знаменателями к числителю первой дроби прибавляют числитель второй дроби (из числителя первой вычитают числитель второй) и оставляют тот же знаменатель.

Не забудьте проверить, можно ли сократить дробь и выделить целую часть.

При сложении и вычитании дробей с разными знаменателями нужно найти наименьший общий знаменатель, сложить или вычесть полученные дроби (используем предыдущее правило).

    Найдем наименьшее общее кратное для определения единого делителя.

Для этого запишем в столбик числа, которые в сумме дают значения делителей. Далее перемножаем полученное и получаем НОК.

НОК (15, 18) = 3 * 2 * 3 * 5 = 90

Найдем дополнительные множители для каждой дроби. Для этого НОК делим на каждый знаменатель:

Полученные числа запишем справа сверху над числителем.

  • Воспользуемся одним из основных свойств дробей: перемножим делимое и делитель на дополнительный множитель. После умножения делитель должен быть равен наименьшему общему кратному, которое мы ранее высчитывали. Затем можно перейти к сложению.
  • Проверим полученный результат:
    • если делимое больше делителя, нужно преобразовать в смешанное число;
    • если есть что сократить, нужно выполнить сокращение.
  • Ход решения одной строкой:

    Сложение или вычитание смешанных чисел можно привести к отдельному сложению их целых частей и дробных частей. Для этого нужно действовать поэтапно:

    1. Сложить целые части.

    2. Сложить дробные части.

    Необходимо приводить к общему, если знаменатели разные. Для этого воспользуемся знаниями из предыдущего примера.

  • Суммировать полученные результаты.
  • Если при сложении дробных частей получилась неправильная дробь, нужно выделить ее целую часть и прибавить к полученной ранее целой части.

    Умножение и деление дробей

    Произведение двух дробей равно дроби, числитель которой равен произведению числителей, а знаменатель — произведению знаменателей:

    Не забываем про сокращение. Это может облегчить вычисления.

    Чтобы умножить два смешанных числа, надо:

    1. преобразовать смешанные дроби в неправильные;
    2. перемножить числители и знаменатели дробей;
    3. сократить полученную дробь;
    4. если получилась неправильная дробь, преобразовать в смешанную.

    Чтобы разделить дробь на дробь нужно выполнить следующую последовательность действий:

    • числитель первой умножить на знаменатель второй, результат произведения записать в числитель новой дроби;
    • знаменатель первой умножить на числитель второй, результат произведения записать в знаменатель новой дроби.

    Другими словами это правило звучит так: чтобы разделить одну дробь на другую, надо первую умножить на обратную от второй.

    Числа, произведение которых равно 1, называют взаимно обратными.

    Как делить дроби с разными знаменателями? На самом деле одинаковые или разные знаменатели у дробей — неважно, потому что все дроби делятся по правилу, описанному выше.

    Для деления смешанных чисел необходимо:

    • представить числа в виде неправильных дробей;
    • разделить то, что получилось друг на друга.

    Источник

    Действия с дробями: правила, примеры, решения

    Данная статья рассматривает действия над дробями. Будут сформированы и обоснованы правила сложения, вычитания, умножения, деления или возведения в степень дробей вида A B , где A и B могут быть числами, числовыми выражениями или выражениями с переменными. В заключении будут рассмотрены примеры решения с подробным описанием.

    Правила выполнения действий с числовыми дробями общего вида

    Числовые дроби общего вида имеют числитель и знаменатель, в которых имеются натуральные числа или числовые выражения. Если рассмотреть такие дроби, как 3 5 , 2 , 8 4 , 1 + 2 · 3 4 · ( 5 — 2 ) , 3 4 + 7 8 2 , 3 — 0 , 8 , 1 2 · 2 , π 1 — 2 3 + π , 2 0 , 5 ln 3 , то видно, что числитель и знаменатель может иметь не только числа, но и выражения различного плана.

    Существуют правила, по которым идет выполнение действий с обыкновенными дробями. Оно подходит и для дробей общего вида:

    • При вычитании дробей с одинаковыми знаменателями складываются только числители, а знаменатель остается прежним, а именно: a d ± c d = a ± c d , значения a , c и d ≠ 0 являются некоторыми числами или числовыми выражениями.
    • При сложении или вычитании дроби при разных знаменателях, необходимо произвести приведение к общему, после чего произвести сложение или вычитание полученных дробей с одинаковыми показателями. Буквенно это выглядит таком образом a b ± c d = a · p ± c · r s , где значения a , b ≠ 0 , c , d ≠ 0 , p ≠ 0 , r ≠ 0 , s ≠ 0 являются действительными числами, а b · p = d · r = s . Когда p = d и r = b , тогда a b ± c d = a · d ± c · d b · d .
    • При умножении дробей выполняется действие с числителями, после чего со знаменателями, тогда получим a b · c d = a · c b · d , где a , b ≠ 0 , c , d ≠ 0 выступают в роли действительных чисел.
    • При делении дроби на дробь первую умножаем на вторую обратную, то есть производим замену местами числителя и знаменателя: a b : c d = a b · d c .

    Обоснование правил

    Существуют следующие математические моменты, на которые следует опираться при вычислении:

    • дробная черта означает знак деления;
    • деление на число рассматривается как умножение на его обратное значение;
    • применение свойства действий с действительными числами;
    • применение основного свойства дроби и числовых неравенств.

    С их помощью можно производить преобразования вида:

    a d ± c d = a · d — 1 ± c · d — 1 = a ± c · d — 1 = a ± c d ; a b ± c d = a · p b · p ± c · r d · r = a · p s ± c · e s = a · p ± c · r s ; a b · c d = a · d b · d · b · c b · d = a · d · a · d — 1 · b · c · b · d — 1 = = a · d · b · c · b · d — 1 · b · d — 1 = a · d · b · c b · d · b · d — 1 = = ( a · c ) · ( b · d ) — 1 = a · c b · d

    Примеры

    В предыдущем пункте было сказано про действия с дробями. Именно после этого дробь нуждается в упрощении. Подробно эта тема была рассмотрена в пункте о преобразовании дробей.

    Для начала рассмотрим пример сложения и вычитания дробей с одинаковым знаменателем.

    Даны дроби 8 2 , 7 и 1 2 , 7 , то по правилу необходимо числитель сложить, а знаменатель переписать.

    Решение

    Тогда получаем дробь вида 8 + 1 2 , 7 . После выполнения сложения получаем дробь вида 8 + 1 2 , 7 = 9 2 , 7 = 90 27 = 3 1 3 . Значит, 8 2 , 7 + 1 2 , 7 = 8 + 1 2 , 7 = 9 2 , 7 = 90 27 = 3 1 3 .

    Ответ: 8 2 , 7 + 1 2 , 7 = 3 1 3

    Имеется другой способ решения. Для начала производится переход к виду обыкновенной дроби, после чего выполняем упрощение. Это выглядит таким образом:

    8 2 , 7 + 1 2 , 7 = 80 27 + 10 27 = 90 27 = 3 1 3

    Произведем вычитание из 1 — 2 3 · log 2 3 · log 2 5 + 1 дроби вида 2 3 3 · log 2 3 · log 2 5 + 1 .

    Так как даны равные знаменатели, значит, что мы выполняем вычисление дроби при одинаковом знаменателе. Получим, что

    1 — 2 3 · log 2 3 · log 2 5 + 1 — 2 3 3 · log 2 3 · log 2 5 + 1 = 1 — 2 — 2 3 3 · log 2 3 · log 2 5 + 1

    Имеются примеры вычисления дробей с разными знаменателями. Важный пункт – это приведение к общему знаменателю. Без этого мы не сможем выполнять дальнейшие действия с дробями.

    Процесс отдаленно напоминает приведение к общему знаменателю. То есть производится поиск наименьшего общего делителя в знаменателе, после чего добавляются недостающие множители к дробям.

    Если складываемые дроби не имеют общих множителей, тогда им может стать их произведение.

    Рассмотрим на примере сложения дробей 2 3 5 + 1 и 1 2 .

    Решение

    В данном случае общим знаменателем выступает произведение знаменателей. Тогда получаем, что 2 · 3 5 + 1 . Тогда при выставлении дополнительных множителей имеем, что к первой дроби он равен 2 , а ко второй 3 5 + 1 . После перемножения дроби приводятся к виду 4 2 · 3 5 + 1 . Общее приведение 1 2 будет иметь вид 3 5 + 1 2 · 3 5 + 1 . Полученные дробные выражения складываем и получаем, что

    2 3 5 + 1 + 1 2 = 2 · 2 2 · 3 5 + 1 + 1 · 3 5 + 1 2 · 3 5 + 1 = = 4 2 · 3 5 + 1 + 3 5 + 1 2 · 3 5 + 1 = 4 + 3 5 + 1 2 · 3 5 + 1 = 5 + 3 5 2 · 3 5 + 1

    Ответ: 2 3 5 + 1 + 1 2 = 5 + 3 5 2 · 3 5 + 1

    Когда имеем дело с дробями общего вида, тогда о наименьшем общем знаменателе обычно дело не идет. В качестве знаменателя нерентабельно принимать произведение числителей. Для начала необходимо проверить, имеется ли число, которое меньше по значению, чем их произведение.

    Рассмотрим на примере 1 6 · 2 1 5 и 1 4 · 2 3 5 , когда их произведение будет равно 6 · 2 1 5 · 4 · 2 3 5 = 24 · 2 4 5 . Тогда в качестве общего знаменателя берем 12 · 2 3 5 .

    Рассмотрим примеры умножений дробей общего вида.

    Для этого необходимо произвести умножение 2 + 1 6 и 2 · 5 3 · 2 + 1 .

    Решение

    Следую правилу, необходимо переписать и в виде знаменателя написать произведение числителей. Получаем, что 2 + 1 6 · 2 · 5 3 · 2 + 1 2 + 1 · 2 · 5 6 · 3 · 2 + 1 . Когда дробь будет умножена, можно производить сокращения для ее упрощения. Тогда 5 · 3 3 2 + 1 : 10 9 3 = 5 · 3 3 2 + 1 · 9 3 10 .

    Используя правило перехода от деления к умножению на обратную дробь, получим дробь, обратную данной. Для этого числитель и знаменатель меняются местами. Рассмотрим на примере:

    5 · 3 3 2 + 1 : 10 9 3 = 5 · 3 3 2 + 1 · 9 3 10

    После чего должны выполнить умножение и упростить полученную дробь. Если необходимо, то избавиться от иррациональности в знаменателе. Получаем, что

    5 · 3 3 2 + 1 : 10 9 3 = 5 · 3 3 · 9 3 10 · 2 + 1 = 5 · 2 10 · 2 + 1 = 3 2 · 2 + 1 = = 3 · 2 — 1 2 · 2 + 1 · 2 — 1 = 3 · 2 — 1 2 · 2 2 — 1 2 = 3 · 2 — 1 2

    Ответ: 5 · 3 3 2 + 1 : 10 9 3 = 3 · 2 — 1 2

    Данный пункт применим, когда число или числовое выражение может быть представлено в виде дроби, имеющую знаменатель, равный 1 , тогда и действие с такой дробью рассматривается отдельным пунктом. Например, выражение 1 6 · 7 4 — 1 · 3 видно, что корень из 3 может быть заменен другим 3 1 выражением. Тогда эта запись будет выглядеть как умножение двух дробей вида 1 6 · 7 4 — 1 · 3 = 1 6 · 7 4 — 1 · 3 1 .

    Выполнение действие с дробями, содержащими переменные

    Правила, рассмотренные в первой статье , применимы для действий с дробями, содержащими переменные. Рассмотрим правило вычитания, когда знаменатели одинаковые.

    Необходимо доказать, что A , C и D ( D не равное нулю) могут быть любыми выражениями, причем равенство A D ± C D = A ± C D равноценно с его областью допустимых значений.

    Необходимо взять набор переменных ОДЗ. Тогда А , С , D должны принимать соответственные значения a 0 , c 0 и d 0 . Подстановка вида A D ± C D приводит разность вида a 0 d 0 ± c 0 d 0 , где по правилу сложения получаем формулу вида a 0 ± c 0 d 0 . Если подставить выражение A ± C D , тогда получаем ту же дробь вида a 0 ± c 0 d 0 . Отсюда делаем вывод, что выбранное значение, удовлетворяющее ОДЗ, A ± C D и A D ± C D считаются равными.

    При любом значении переменных данные выражения будут равны, то есть их называют тождественно равными. Значит это выражение считается доказываемым равенством вида A D ± C D = A ± C D .

    Примеры сложения и вычитания дробей с переменными

    Когда имеются одинаковые знаменатели, необходимо только складывать или вычитать числители. Такая дробь может быть упрощена. Иногда приходится работать с дробями, которые являются тождественно равными, но при первом взгляде это незаметно, так как необходимо выполнять некоторые преобразования. Например, x 2 3 · x 1 3 + 1 и x 1 3 + 1 2 или 1 2 · sin 2 α и sin a · cos a . Чаще всего требуется упрощение исходного выражения для того, чтобы увидеть одинаковые знаменатели.

    Вычислить: 1 ) x 2 + 1 x + x — 2 — 5 — x x + x — 2 , 2 ) l g 2 x + 4 x · ( l g x + 2 ) + 4 · l g x x · ( l g x + 2 ) , x — 1 x — 1 + x x + 1 .

    Решение

    1. Чтобы произвести вычисление, необходимо вычесть дроби, которым имеют одинаковые знаменатели. Тогда получаем, что x 2 + 1 x + x — 2 — 5 — x x + x — 2 = x 2 + 1 — 5 — x x + x — 2 . После чего можно выполнять раскрытие скобок с приведением подобных слагаемых. Получаем, что x 2 + 1 — 5 — x x + x — 2 = x 2 + 1 — 5 + x x + x — 2 = x 2 + x — 4 x + x — 2
    2. Так как знаменатели одинаковые, то остается только сложить числители, оставив знаменатель:​​​​​​ l g 2 x + 4 x · ( l g x + 2 ) + 4 · l g x x · ( l g x + 2 ) = l g 2 x + 4 + 4 x · ( l g x + 2 )
      Сложение было выполнено. Видно, что можно произвести сокращение дроби. Ее числитель может быть свернут по формуле квадрата суммы, тогда получим ( l g x + 2 ) 2 из формул сокращенного умножения. Тогда получаем, что
      l g 2 x + 4 + 2 · l g x x · ( l g x + 2 ) = ( l g x + 2 ) 2 x · ( l g x + 2 ) = l g x + 2 x
    3. Заданные дроби вида x — 1 x — 1 + x x + 1 с разными знаменателями. После преобразования можно перейти к сложению.

    Рассмотрим двоякий способ решения.

    Первый способ заключается в том, что знаменатель первой дроби подвергается разложению на множители при помощи квадратов, причем с ее последующим сокращением. Получим дробь вида

    x — 1 x — 1 = x — 1 ( x — 1 ) · x + 1 = 1 x + 1

    Значит, x — 1 x — 1 + x x + 1 = 1 x + 1 + x x + 1 = 1 + x x + 1 .

    В таком случае необходимо избавляться от иррациональности в знаменателе.

    1 + x x + 1 = 1 + x · x — 1 x + 1 · x — 1 = x — 1 + x · x — x x — 1

    Второй способ заключается в умножении числителя и знаменателя второй дроби на выражение x — 1 . Таким образом, мы избавляемся от иррациональности и переходим к сложению дроби при наличии одинакового знаменателя. Тогда

    x — 1 x — 1 + x x + 1 = x — 1 x — 1 + x · x — 1 x + 1 · x — 1 = = x — 1 x — 1 + x · x — x x — 1 = x — 1 + x · x — x x — 1

    Ответ: 1 ) x 2 + 1 x + x — 2 — 5 — x x + x — 2 = x 2 + x — 4 x + x — 2 , 2 ) l g 2 x + 4 x · ( l g x + 2 ) + 4 · l g x x · ( l g x + 2 ) = l g x + 2 x , 3 ) x — 1 x — 1 + x x + 1 = x — 1 + x · x — x x — 1 .

    В последнем примере получили, что приведение к общему знаменателю неизбежно. Для этого необходимо упрощать дроби. Для сложения или вычитая всегда необходимо искать общий знаменатель, который выглядит как произведение знаменателей с добавлением дополниетльных множителей к числителям.

    Вычислить значения дробей: 1 ) x 3 + 1 x 7 + 2 · 2 , 2 ) x + 1 x · ln 2 ( x + 1 ) · ( 2 x — 4 ) — sin x x 5 · ln ( x + 1 ) · ( 2 x — 4 ) , 3 ) 1 cos 2 x — x + 1 cos 2 x + 2 · cos x · x + x

    Решение

    1. Никаких сложных вычислений знаменатель не требует, поэтому нужно выбрать их произведение вида 3 · x 7 + 2 · 2 , тогда к первой дроби x 7 + 2 · 2 выбирают как дополнительный множитель, а 3 ко второй. При перемножении получаем дробь вида x 3 + 1 x 7 + 2 · 2 = x · x 7 + 2 · 2 3 · x 7 + 2 · 2 + 3 · 1 3 · x 7 + 2 · 2 = = x · x 7 + 2 · 2 + 3 3 · x 7 + 2 · 2 = x · x 7 + 2 · 2 · x + 3 3 · x 7 + 2 · 2
    2. Видно, что знаменатели представлены в виде произведения, что означает ненужность дополнительных преобразований. Общим знаменателем будет считаться произведение вида x 5 · ln 2 x + 1 · 2 x — 4 . Отсюда x 4 является дополнительным множителем к первой дроби, а ln ( x + 1 ) ко второй. После чего производим вычитание и получаем, что:
      x + 1 x · ln 2 ( x + 1 ) · 2 x — 4 — sin x x 5 · ln ( x + 1 ) · 2 x — 4 = = x + 1 · x 4 x 5 · ln 2 ( x + 1 ) · 2 x — 4 — sin x · ln x + 1 x 5 · ln 2 ( x + 1 ) · ( 2 x — 4 ) = = x + 1 · x 4 — sin x · ln ( x + 1 ) x 5 · ln 2 ( x + 1 ) · ( 2 x — 4 ) = x · x 4 + x 4 — sin x · ln ( x + 1 ) x 5 · ln 2 ( x + 1 ) · ( 2 x — 4 )
    3. Данный пример имеет смысл при работе со знаменателями дробями. Необходимо применить формулы разности квадратов и квадрат суммы, так как именно они дадут возможность перейти к выражению вида 1 cos x — x · cos x + x + 1 ( cos x + x ) 2 . Видно, что дроби приводятся к общему знаменателю. Получаем, что cos x — x · cos x + x 2 .

    После чего получаем, что

    1 cos 2 x — x + 1 cos 2 x + 2 · cos x · x + x = = 1 cos x — x · cos x + x + 1 cos x + x 2 = = cos x + x cos x — x · cos x + x 2 + cos x — x cos x — x · cos x + x 2 = = cos x + x + cos x — x cos x — x · cos x + x 2 = 2 · cos x cos x — x · cos x + x 2

    Ответ:

    1 ) x 3 + 1 x 7 + 2 · 2 = x · x 7 + 2 · 2 · x + 3 3 · x 7 + 2 · 2 , 2 ) x + 1 x · ln 2 ( x + 1 ) · 2 x — 4 — sin x x 5 · ln ( x + 1 ) · 2 x — 4 = = x · x 4 + x 4 — sin x · ln ( x + 1 ) x 5 · ln 2 ( x + 1 ) · ( 2 x — 4 ) , 3 ) 1 cos 2 x — x + 1 cos 2 x + 2 · cos x · x + x = 2 · cos x cos x — x · cos x + x 2 .

    Примеры умножения дробей с переменными

    При умножении дробей числитель умножается на числитель, а знаменатель на знаменатель. Тогда можно применять свойство сокращения.

    Произвести умножение дробей x + 2 · x x 2 · ln x 2 · ln x + 1 и 3 · x 2 1 3 · x + 1 — 2 sin 2 · x — x .

    Решение

    Необходимо выполнить умножение. Получаем, что

    x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 — 2 sin ( 2 · x — x ) = = x — 2 · x · 3 · x 2 1 3 · x + 1 — 2 x 2 · ln x 2 · ln x + 1 · sin ( 2 · x — x )

    Число 3 переносится на первое место для удобства подсчетов, причем можно произвести сокращение дроби на x 2 , тогда получим выражение вида

    3 · x — 2 · x · x 1 3 · x + 1 — 2 ln x 2 · ln x + 1 · sin ( 2 · x — x )

    Ответ: x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 — 2 sin ( 2 · x — x ) = 3 · x — 2 · x · x 1 3 · x + 1 — 2 ln x 2 · ln x + 1 · sin ( 2 · x — x ) .

    Деление

    Деление у дробей аналогично умножению, так как первую дробь умножают на вторую обратную. Если взять к примеру дробь x + 2 · x x 2 · ln x 2 · ln x + 1 и разделить на 3 · x 2 1 3 · x + 1 — 2 sin 2 · x — x , тогда это можно записать таким образом, как

    x + 2 · x x 2 · ln x 2 · ln x + 1 : 3 · x 2 1 3 · x + 1 — 2 sin ( 2 · x — x ) , после чего заменить произведением вида x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 — 2 sin ( 2 · x — x )

    Возведение в степень

    Перейдем к рассмотрению действия с дробями общего вида с возведением в степень. Если имеется степень с натуральным показателем, тогда действие рассматривают как умножение одинаковых дробей. Но рекомендовано использовать общий подход, базирующийся на свойствах степеней. Любые выражения А и С , где С тождественно не равняется нулю, а любое действительное r на ОДЗ для выражения вида A C r справедливо равенство A C r = A r C r . Результат – дробь, возведенная в степень. Для примера рассмотрим:

    x 0 , 7 — π · ln 3 x — 2 — 5 x + 1 2 , 5 = = x 0 , 7 — π · ln 3 x — 2 — 5 2 , 5 x + 1 2 , 5

    Порядок выполнения действий с дробями

    Действия над дробями выполняются по определенным правилам. На практике замечаем, что выражение может содержать несколько дробей или дробных выражений. Тогда необходимо все действия выполнять в строгом порядке: возводить в степень, умножать, делить, после чего складывать и вычитать. При наличии скобок первое действие выполняется именно в них.

    Вычислить 1 — x cos x — 1 c o s x · 1 + 1 x .

    Решение

    Так как имеем одинаковый знаменатель, то 1 — x cos x и 1 c o s x , но производить вычитания по правилу нельзя, сначала выполняются действия в скобках, после чего умножение, а потом сложение. Тогда при вычислении получаем, что

    1 + 1 x = 1 1 + 1 x = x x + 1 x = x + 1 x

    При подстановке выражения в исходное получаем, что 1 — x cos x — 1 cos x · x + 1 x . При умножении дробей имеем: 1 cos x · x + 1 x = x + 1 cos x · x . Произведя все подстановки, получим 1 — x cos x — x + 1 cos x · x . Теперь необходимо работать с дробями, которые имеют разные знаменатели. Получим:

    x · 1 — x cos x · x — x + 1 cos x · x = x · 1 — x — 1 + x cos x · x = = x — x — x — 1 cos x · x = — x + 1 cos x · x

    Ответ: 1 — x cos x — 1 c o s x · 1 + 1 x = — x + 1 cos x · x .

    Источник

    Читайте также:  Способы выполнения действий с документом word
    Оцените статью
    Разные способы