Математика
Чтобы убедиться, что какое-нибудь арифметическое действие сделано без ошибки, его проверяют.
Проверкой называют совокупность арифметических приемов с целью убедиться, что данное арифметическое действие исполнено верно. Проверка также состоит из арифметических действий, выполненных в другом порядке.
Самый простой способ убедиться, что действие выполнено верно, состоит, конечно, в том, чтобы повторить его снова. Однако, замечено, что уверенность наша увеличивается, если мы убедимся другим путем в верности какого-нибудь результата, поэтому проверяют арифметические действия иначе.
Проверка основана на главных свойствах самих арифметических действий и на зависимости, существующей между данными и искомыми числами.
Основываясь на главных свойствах самих действий, мы можем каждое действие проверять тем же действием, только выполненным в другом порядке. Таким образом, сложение проверяется сложением, вычитание — вычитанием и т. д.
Проверка арифметических действий теми же действиями
Проверка сложения
Сумма не изменяется от перемены порядка слагаемых, следовательно, чтобы проверить сложение, нужно сложить слагаемые в другом порядке; если получится та же самая сумма, сложение сделано верно.
Обычно при проверке складываются слагаемые в обратном порядке, то есть снизу вверх.
Проверка вычитания
Вычитаемое равно уменьшаемому без разности, следовательно, чтобы проверить вычитание, нужно из уменьшаемого вычесть разность; если в остатке получится вычитаемое, вычитание сделано верно.
Проверка умножения
Произведение не изменяется от перемены порядка множителей, следовательно, чтобы проверить умножение, нужно переменить порядок множителей и снова выполнить умножение; если получим то же произведение, умножение выполнено верно.
Проверка деления
При делении нацело делитель равен делимому, разделенному на частное, следовательно, чтобы проверить деление, в случае деления нацело, нужно делимое разделить на частное; если в частном получится делитель, деление сделано верно.
Источник
Свойства сложения и вычитания
О чем эта статья:
Свойства сложения
Сложение — это арифметическое действие, в котором единицы двух чисел объединяются в одно новое число
Для записи сложения используют знак «+» (плюс), который ставят между слагаемыми.
Слагаемые — это числа, единицы которых складываются.
Сумма — это число, которое получается в результате сложения.
Рассмотрим пример 2 + 5 = 7, в котором:
- 2 — это первое слагаемое,
- 5 — второе слагаемое,
- 7 — это сумма.
При этом саму запись (2 + 5) можно тоже назвать суммой.
Сложение двух чисел можно проверить вычитанием. Для этого вычитаем из суммы одно из слагаемых. Если разность окажется равной другому слагаемому — сложение выполнено верно.
Впервые мы сталкиваемся со свойствами сложения во 2 классе. С каждым годом задания усложняются, и появляются новые правила и законы. Рассмотрим свойства сложения для 4 класса.
- Переместительное свойство сложения
От перестановки мест слагаемых сумма не меняется.
a + b = b + a - Сочетательное свойство сложения
Чтобы к сумме двух чисел прибавить третье нужно к первому числу прибавить сумму второго и третьего числа.
(a + b) + c = a + (b + c) - Свойство нуля при сложении
Если к числу прибавить нуль, получится само число.
a + 0 = 0 + a = a
Свойства вычитания
Вычитание— это арифметическое действие, в котором отнимают меньшее число от большего.
Для записи вычитания используется знак «-» (минус), который ставится между уменьшаемым и вычитаемым.
Уменьшаемое — это число, из которого вычитают.
Вычитаемое — это число, которое вычитают.
Разность — это число, которое получается в результате вычитания.
Рассмотрим пример 9 — 4 = 5, в котором:
При этом саму запись (9 — 4) тоже можно назвать разностью.
Примеры использования свойств сложения и вычитания
Мы узнали основные свойства сложения и вычитания — осталось попрактиковаться. Чтобы ничего не забыть, используйте эту шпаргалку:
Пример 1
Вычислить сумму слагаемых с использованием разных свойств:
а) 4 + 3 + 8 = (4 + 3) + 8 = 7 + 8 = 15
б) 9 + 11 + 2 = (9 + 2) + 11 = 11 + 11 = 22
в) 30 + 0 + 13 = 30 + 13 = 43
Пример 2
Применить разные свойства при вычислении разности:
а) 25 — 0 — 2 = 25 — 2 = 23
б) 18 — (1 + 4) = 18 — 1 — 4 = 17 — 4 = 13
Пример 3
Найти значение выражения удобным способом:
а) 11 + 10 + 3 + 9 = (11 + 10) + (3 + 9) = 21 + 11 = 32
б) 16 — (4 + 3) + 7 = 16 — 4 — 3 + 7 = (16 — 4) — 3 + 7 = 12 — 3 + 7 = 9 + 7 = 16
Источник
Математика. 2 класс
Конспект урока
Математика, 2 класс. Урок №27
Проверка сложения. Проверка вычитания.
Перечень вопросов, рассматриваемых в теме:
— Что такое обратные математические действия?
— Как проверить сложение?
— Как проверить вычитание?
Глоссарий по теме:
Сложение – это объединение объектов в одно целое. Результатом сложения чисел является число, называемое суммой чисел (слагаемых).
Вычитание – это такое действие, в котором отнимают меньшее число от большего. Большее число называется уменьшаемым, меньшее – вычитаемым, результат вычитания – разностью.
Обратные действия – действия, приводящие к прежнему, исходному состоянию.
Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):
- Математика. 2 класс. Учебник для общеобразовательных организаций. В 2 ч. Ч.1/ М. И. Моро, М. А. Бантова, Г. В. Бельтюкова и др. – 8-е изд. – М.: Просвещение, 2017. – с.84-86.
- Математика. Рабочая тетрадь. 2 класс. Учебное пособие для общеобразовательных организаций. В 2 ч. Ч.1/ М. И. Моро, М. А. Бантова – 6-е изд., дораб. – М.: Просвещение, 2016. – с.60.
- Математика: переходим в 3-й класс. Учебное пособие для общеобразовательных организаций. А. В. Светин – М.: Просвещение: Уч. Лит, 2017. – с.40.
Теоретический материал для самостоятельного изучения
Используя числа 7, 5, 12 составим все возможные равенства.
7 + 5 = 12 12 – 5 = 7
12 – 7 = 5 5 + 7 = 12
Назовём компоненты и результат действия сложения.
Слагаемое + слагаемое = сумма
Назовём компоненты и результат действия вычитания.
Уменьшаемое – вычитаемое = разность
Действия сложение и вычитание связаны друг с другом, являются взаимно обратными действиями.
Как проверить, верно ли выполнено сложение. Воспользуемся знанием того, как связаны слагаемые и сумма. Если из суммы двух слагаемых вычесть одно из них, то получится другое слагаемое. Это позволяет сложение проверить вычитанием.
Например, надо проверить, верно ли вычислили сумму чисел 28 и 5. Для этого из суммы 33 вычтем одно из слагаемых. Например, 5. Должно получиться другое слагаемое. Получилось 28. Значит, сумма чисел 28 и 5 найдена правильно. Можно вычесть из суммы другое слагаемое.
Сумма чисел 36 и 9 найдена неверно, т.к. после вычитания из суммы 47 слагаемого 9, другое слагаемое, 36 не получается.
Вычислим ещё раз сумму чисел 36 и 9 и проверим результат.
36 – первое слагаемое
Сформулируем правило проверки сложения: «Для проверки сложения надо из значения суммы вычесть одно из слагаемых. Если в результате вычитания получается другое слагаемое, значит, сложение выполнено верно».
Как проверить вычитание? Воспользуемся знанием того, как связаны между собой уменьшаемое, вычитаемое, разность. Если к разности прибавить вычитаемое, то получится уменьшаемое. Значит, вычитание можно проверить сложением.
Вычислим разность чисел 48 и 30. Она равна 18. Проверим вычитание сложением. К разности 18 прибавим вычитаемое 30, получим 48. Это уменьшаемое.
Если из уменьшаемого вычесть разность, то получится вычитаемое.
Значит, вычитание можно проверить и вычитанием. Рассмотрим это на примере.
Из уменьшаемого 48 вычтем разность 18, получим 30, т.е. вычитаемое. Значит, разность чисел 48 и 30 вычислена верно.
Сформулируем правила проверки вычитания: «Для проверки вычитания, надо к значению разности прибавить вычитаемое. Если в результате сложения получается уменьшаемое, значит, вычитание выполнено верно», или «Для проверки вычитания, надо из уменьшаемого вычесть разность. Если в результате получается вычитаемое, значит, вычитание выполнено верно».
Вывод: Сложение и вычитание – это обратные действия. Для проверки сложения надо из значения суммы вычесть одно из слагаемых. Если в результате вычитания получается другое слагаемое, значит, сложение выполнено верно. Для того, чтобы выполнить проверку вычитания, надо к значению разности прибавить вычитаемое. Если в результате сложения получается уменьшаемое, значит, вычитание выполнено верно.
1. Найдите значение первого выражения в каждой рамке, а затем выполни проверку полученного результата двумя способами.
Источник
Математика. 3 класс
Конспект урока
Математика, 3 класс
Урок № 57. Разные способы вычислений.
Перечень вопросов, рассматриваемых в теме:
Как выполнять устно вычисления в случаях, сводимых к действиям в пределах 1000, используя различные приёмы устных вычислений?
Как выбирать удобный способ?
Как выполнять проверку вычислений?
Глоссарий по теме:
Круглым называется число, которое делится на 10, 100, 1000 и так далее, без остатка.
Каждая цифра в записи многозначного числа занимает определённое место – позицию. Место (позицию) в записи числа, на котором стоит цифра, называют разрядом.
Единицы, десятки, сотни, тысячи и т. д. иначе ещё называют разрядными единицами:
единицы называют единицами 1-го разряда
десятки называют единицами 2-го разряда
сотни называют единицами 3-го разряда и т. д.
Сложение – арифметическое действие в математике, в результате которого два или более чисел объединяется в единое целое, оно обозначается знаком «+». Слагаемое, слагаемое, сумма – главные составляющие математического действия сложения.
Вычитание – арифметическое действие, обратное сложению и обозначается оно знаком «-». Уменьшаемое, вычитаемое, разность- главные составляющие математического действия вычитания.
Основная и дополнительная литература по теме урока:
Моро М.И. Учебник для 3 класса четырехлетней начальной школы. М. «Просвещение» — 2017. С. 68-69
Волкова С.И. математика. Проверочные работы. 3 кл. — М.: Просвещение, 2018.С. 72-73
Рудницкая В.Н. Математика. Дидактические материалы. Ч.1. 3 кл. – М. «Вентана- Граф», 2016, с. 9-12
Теоретический материал для самостоятельного изучения
Вам уже знакомы приёмы устных вычислений в пределах 1000.
Но наша цель не просто узнать о них, а уверенно ими пользоваться.
Часто ученики допускают ошибки при решении примеров.
Сегодня мы более подробно остановимся на таких случаях и разберемся, как их избежать
Надеюсь, что после урока вы даже сможете посоревноваться с друзьями в устном счёте.
Вспомним приёмы устных вычислений, с которыми познакомились на прошлом уроке.
работаем с разрядными слагаемыми
работаем с общим количеством десятков.
Чтобы быстро и правильно решать такие примеры надо уметь выбирать более удобный способ.
А как выбрать удобный способ?
Выберем из этих примеров те, которые удобнее решать, работая с разрядными слагаемыми.
Согласитесь, что эти примеры будет легко решить, представив одно из слагаемых в виде суммы разрядных слагаемых.
Например: 420 + 50, десятки сложим с десятками и прибавим сотни, а при решении примера 320 + 500 сложим сотни и прибавим десятки.
Что же не так с остальными примерами?
Внимательно посмотри на числа. При выполнении действий с десятками происходит переход через разряд. Это вызывает затруднения.
Именно поэтому здесь удобнее воспользоваться вторым способом – работать с общим количеством десятков.
Рассмотрим первый пример: 150 — 90
Пользуясь первым способом, нам пришлось бы из 50 вычитать 90, а это невозможно.
Приходит на помощь второй способ:
15 дес. — 9 дес. это 6 дес. или 60. Никаких проблем.
Тоже самое с остальными примерами.
Но есть ещё одна опасность при решении подобных примеров на вычитание.
Рассмотрим два примера:
560 — 300 и 600 — 240.
Обрати внимание, в первом примере десятки в уменьшаемом, а во втором — в вычитаемом.
На это очень важно обращать внимание!
Понаблюдаем за решением.
560 — 300 = (500 — 300) + 60 = 260
600 — 240 = (600 — 200) — 40 = 360
В первом случае десятки прибавляем, а во втором вычитаем. Так как в первом случае вычитаем только сотни – 300, а во втором – сотни и десятки — 240
Если же ты сомневаешься в результате или просто хочешь убедиться в правильности, можно выполнить проверку.
Проверка выполняется обратным действием. Сложение проверяем вычитанием и наоборот.
Проверка: 260 + 300 = 560
Проверка: 360 + 240 = 600
Сегодня мы раскрыли вам секреты приёмов устного сложения и вычитания.
Пользуйтесь ими и удачи!
Задания тренировочного модуля:
- Распределите карточки с примерами на две группы по более удобному способу решения.
- Поставьте в ячейке напротив «+», если согласны с решением, и «-», если не согласны.
- Ученик решил примеры. Выберите отметку, которую он получил за работу.
Источник