- Математика
- Проверка арифметических действий теми же действиями
- Проверка сложения
- Проверка вычитания
- Проверка умножения
- Проверка деления
- Способы проверки решения арифметических задач и вычислений методическая разработка по математике на тему
- Скачать:
- Предварительный просмотр:
- Математика. 2 класс
- Способы проверки правильности решения задачи в начальных классах
Математика
Чтобы убедиться, что какое-нибудь арифметическое действие сделано без ошибки, его проверяют.
Проверкой называют совокупность арифметических приемов с целью убедиться, что данное арифметическое действие исполнено верно. Проверка также состоит из арифметических действий, выполненных в другом порядке.
Самый простой способ убедиться, что действие выполнено верно, состоит, конечно, в том, чтобы повторить его снова. Однако, замечено, что уверенность наша увеличивается, если мы убедимся другим путем в верности какого-нибудь результата, поэтому проверяют арифметические действия иначе.
Проверка основана на главных свойствах самих арифметических действий и на зависимости, существующей между данными и искомыми числами.
Основываясь на главных свойствах самих действий, мы можем каждое действие проверять тем же действием, только выполненным в другом порядке. Таким образом, сложение проверяется сложением, вычитание — вычитанием и т. д.
Проверка арифметических действий теми же действиями
Проверка сложения
Сумма не изменяется от перемены порядка слагаемых, следовательно, чтобы проверить сложение, нужно сложить слагаемые в другом порядке; если получится та же самая сумма, сложение сделано верно.
Обычно при проверке складываются слагаемые в обратном порядке, то есть снизу вверх.
Проверка вычитания
Вычитаемое равно уменьшаемому без разности, следовательно, чтобы проверить вычитание, нужно из уменьшаемого вычесть разность; если в остатке получится вычитаемое, вычитание сделано верно.
Проверка умножения
Произведение не изменяется от перемены порядка множителей, следовательно, чтобы проверить умножение, нужно переменить порядок множителей и снова выполнить умножение; если получим то же произведение, умножение выполнено верно.
Проверка деления
При делении нацело делитель равен делимому, разделенному на частное, следовательно, чтобы проверить деление, в случае деления нацело, нужно делимое разделить на частное; если в частном получится делитель, деление сделано верно.
Источник
Способы проверки решения арифметических задач и вычислений
методическая разработка по математике на тему
Для эффективности усвоения приёмов проверки решения задач и вычислений разработаны памятки, содержащие систему операций.
Скачать:
Вложение | Размер |
---|---|
sposoby_proverki_resheniya_zadach.doc | 95.5 КБ |
Предварительный просмотр:
Акимова Ольга Ивановна,
учитель ГБОУ школы №115 Выборгского района г. Санкт-Петербурга
Способы проверки решения арифметических задач и вычислений
Основное содержание начального курса математики составляют устные и письменные вычисления и решение арифметических задач. Умения вычислять и решать задачи имеют не только большое практическое значение, но и являются прекрасным средством углубления приобретённых детьми на уроках математики теоретических знаний, служат для развития творческого мышления учащихся, способствуют развитию у них сообразительности, внимания, гибкости и умственной самостоятельности.
При выполнении вычислений и решении задач школьники допускают большое количество ошибок, исправление которых часто бывает, затруднено не только и не столько непониманием учеником природы ошибок, сколько неумением их обнаружить.
Программа обучения математике в начальной школе предполагает знакомство с некоторыми видами проверки вычислений и арифметических задач, но проверка выполняется , если такое задание сформулировано в учебнике или данный вопрос в это время изучается специально. Систематическая проверка ,как правило, в школе не проводится. Решение задач и примеров заканчивается получением результата. Следствием этого является то, что дети не в состоянии проконтролировать свою деятельность, часто не замечают ошибок в ходе и результате решения.
Организуя проверку решения задачи, учитель должен помнить, что не все способы применимы к любой задаче. В методической литературе выделяются следующие способы проверки арифметических задач:
- Составление и решение обратной задачи
- Решение задачи другим способом
- Прикидка результата
Из перечисленных способов особое внимание уделяется составлению и решению обратной задачи. Этот приём достаточно универсален, так как составить обратную задачу можно к любой исходной. Лучше этот приём использовать, начиная со 2 класса, так как при составлении обратной задачи может получиться задача труднее, чем исходная.
Решение задачи другим способом — приём достаточно сложный, так как является творческим видом работы и не все учащиеся могут найти даже один способ решения задачи. Существуют приёмы, которые позволяют отыскать иной способ решения задачи: построение иной модели задачи, чем та, которая была использована; дополнение условия задачи сведениями, не влияющими на результат решения; представление практического разрешения ситуации, описанной в задаче. Эти приёмы представляются ученику в виде учебной задачи.
Самым элементарным способом проверки является прикидка – установление границ искомого числа. Предполагается вводить его уже в первом классе. Прикидка обычно проводится перед решением задачи, устанавливаются границы значений искомого числа. После получения ответа проверяют, удовлетворяет ли он выбранным границам. В случае несоответствия делают вывод о неправильности результата.
Применять этот способ можно как для простых, так и для составных задач. Данный способ является необходимой частью анализа задач в косвенной форме, в связи с тем, что еще до решения задачи нужно выяснить, какое число получится в ответе – больше или меньше данного.
Приёмы проверки решения арифметических задач легко переносятся на вычисления и выполняются с использованием тех же алгоритмов.
Умение проверять решение задач и вычисления способствует выработке потребности самоконтроля у младших школьников, оно не только порождает уверенность в правильности решения, но и позволяет глубже понять математическое содержание данных видов упражнений, осознать связи между этими упражнениями, формирует умение рассуждать, активизирует мыслительную деятельность детей.
Для эффективности усвоения приёмов проверки решения задач и вычислений созданы памятки, содержащие систему операций.
Памятка для проверки решения задачи способом составления и решения обратной задачи.
- Решить прямую задачу
- Подставить в текст задачи полученное число
- Выбрать из данных задачи новое неизвестное число
- Сформулировать новую задачу
- Решить её
- Сравнить полученное число с тем, которое было выбрано в качестве неизвестного
- Сделать вывод о правильности решения задачи
Памятка для проверки вычислений способом составления и решения обратного примера
- Реши исходный пример
- Подставь в пример найденное число
- Выбрать из данных примера новое неизвестное число
- Запиши новый пример
- Реши пример
- Сравнить полученное число с тем, которое было выбрано в качестве неизвестного
- Сделать вывод о правильности решения примера
Памятка для проверки решения задачи способом прикидки результата
- Прочитай задачу
- Выдели данное и искомое
- Подумай, с каким из чисел можно сравнить искомое
- Подумай, какое число должно получиться в ответе, больше или меньше, чем данные
- Реши задачу
- Сравни полученный ответ с данным задачи
- Сделать вывод о правильности решения задачи
Памятка для проверки вычислений способом прикидки результата
- Прочитай исходный пример
- Выдели данные и искомое
- Подумай, с каким из чисел можно сравнить искомое
- Подумай, какое число должно получиться в ответе, больше или меньше, чем данные
- Реши пример
- Сравни полученный ответ с данным примера
- Сделать вывод о правильности вычисления
Источник
Математика. 2 класс
Конспект урока
Математика, 2 класс. Урок №27
Проверка сложения. Проверка вычитания.
Перечень вопросов, рассматриваемых в теме:
— Что такое обратные математические действия?
— Как проверить сложение?
— Как проверить вычитание?
Глоссарий по теме:
Сложение – это объединение объектов в одно целое. Результатом сложения чисел является число, называемое суммой чисел (слагаемых).
Вычитание – это такое действие, в котором отнимают меньшее число от большего. Большее число называется уменьшаемым, меньшее – вычитаемым, результат вычитания – разностью.
Обратные действия – действия, приводящие к прежнему, исходному состоянию.
Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):
- Математика. 2 класс. Учебник для общеобразовательных организаций. В 2 ч. Ч.1/ М. И. Моро, М. А. Бантова, Г. В. Бельтюкова и др. – 8-е изд. – М.: Просвещение, 2017. – с.84-86.
- Математика. Рабочая тетрадь. 2 класс. Учебное пособие для общеобразовательных организаций. В 2 ч. Ч.1/ М. И. Моро, М. А. Бантова – 6-е изд., дораб. – М.: Просвещение, 2016. – с.60.
- Математика: переходим в 3-й класс. Учебное пособие для общеобразовательных организаций. А. В. Светин – М.: Просвещение: Уч. Лит, 2017. – с.40.
Теоретический материал для самостоятельного изучения
Используя числа 7, 5, 12 составим все возможные равенства.
7 + 5 = 12 12 – 5 = 7
12 – 7 = 5 5 + 7 = 12
Назовём компоненты и результат действия сложения.
Слагаемое + слагаемое = сумма
Назовём компоненты и результат действия вычитания.
Уменьшаемое – вычитаемое = разность
Действия сложение и вычитание связаны друг с другом, являются взаимно обратными действиями.
Как проверить, верно ли выполнено сложение. Воспользуемся знанием того, как связаны слагаемые и сумма. Если из суммы двух слагаемых вычесть одно из них, то получится другое слагаемое. Это позволяет сложение проверить вычитанием.
Например, надо проверить, верно ли вычислили сумму чисел 28 и 5. Для этого из суммы 33 вычтем одно из слагаемых. Например, 5. Должно получиться другое слагаемое. Получилось 28. Значит, сумма чисел 28 и 5 найдена правильно. Можно вычесть из суммы другое слагаемое.
Сумма чисел 36 и 9 найдена неверно, т.к. после вычитания из суммы 47 слагаемого 9, другое слагаемое, 36 не получается.
Вычислим ещё раз сумму чисел 36 и 9 и проверим результат.
36 – первое слагаемое
Сформулируем правило проверки сложения: «Для проверки сложения надо из значения суммы вычесть одно из слагаемых. Если в результате вычитания получается другое слагаемое, значит, сложение выполнено верно».
Как проверить вычитание? Воспользуемся знанием того, как связаны между собой уменьшаемое, вычитаемое, разность. Если к разности прибавить вычитаемое, то получится уменьшаемое. Значит, вычитание можно проверить сложением.
Вычислим разность чисел 48 и 30. Она равна 18. Проверим вычитание сложением. К разности 18 прибавим вычитаемое 30, получим 48. Это уменьшаемое.
Если из уменьшаемого вычесть разность, то получится вычитаемое.
Значит, вычитание можно проверить и вычитанием. Рассмотрим это на примере.
Из уменьшаемого 48 вычтем разность 18, получим 30, т.е. вычитаемое. Значит, разность чисел 48 и 30 вычислена верно.
Сформулируем правила проверки вычитания: «Для проверки вычитания, надо к значению разности прибавить вычитаемое. Если в результате сложения получается уменьшаемое, значит, вычитание выполнено верно», или «Для проверки вычитания, надо из уменьшаемого вычесть разность. Если в результате получается вычитаемое, значит, вычитание выполнено верно».
Вывод: Сложение и вычитание – это обратные действия. Для проверки сложения надо из значения суммы вычесть одно из слагаемых. Если в результате вычитания получается другое слагаемое, значит, сложение выполнено верно. Для того, чтобы выполнить проверку вычитания, надо к значению разности прибавить вычитаемое. Если в результате сложения получается уменьшаемое, значит, вычитание выполнено верно.
1. Найдите значение первого выражения в каждой рамке, а затем выполни проверку полученного результата двумя способами.
Источник
Способы проверки правильности решения задачи в начальных классах
Проверка решения задачи — один из важных этапов работы над задачей.
Цель проверки — установить, соответствует ли процесс и результат решения образцу правильного решения. В начальном курсе математики могут быть использованы следующие способы проверки решения текстовых задач (Бантова М.И., Царева С.Е. и др.).
1. Прикидка (прогнозирование результата, установление границ ответа на вопрос задачи и последующее сравнение хода решения с прогнозом) — при несоответствии прогнозу — решение неверно, при соответствии — может быть верно, а может неверно.
2. Установление соответствия между результатом решения и условием задачи (введение в текст задачи вместе вопроса ответа на него, получение всех возможных следствий из полученного текста, сопоставление результатов друг с другом и с информацией, содержащейся в тексте) — если обнаружено противоречие, задача решена неверно, и наоборот, однако правильность хода решения не устанавливается.
3. Решение другим методом или способом (результаты должны совпасть)- правильность хода решения не устанавливается.
4. Составление и решение обратной задачи (в результат решения должно быть получено данное прямой задачи) — правильность хода решения не устанавливается.
5. Сравнением с правильным решением — с образцом хода и результата решения возможно установление правильности как хода, так и результат решения).
6. Повторное решение тем же методом и способом (возможно установление правильности как хода, так и результата решения).
7. Решение задач «с малыми числами» с последующей проверкой вычислений (возможно установление правильности как хода, так и результат решения).
8. Решение задач с упрощенными отношениями и зависимостями с последующим восстановлением отношений и зависимостей, данных в задаче (возможно установление правильности как хода, так и результат решения).
9. Обоснование каждого шага решения через соотнесение с более общими теоретическими положениями (возможно установление правильности как хода, так и результат решения).
10. Определение смысла составленных в процессе решения выражений (если все выражения имеют смысл и смысл последнего таков, что позволяет ответить на вопрос задачи, то выражения составлены верно и после проверки правильности нахождения значений выражений, можно утверждать, что ход и результат решения верны) — возможно установление правильности как хода, так и результат решения.
Этапы обучения проверке (для всех способов):
I. Подготовительная работа к введению приема:
Цель: сформировать умения, необходимые для осуществления приема проверки.
II. Проверка решения под руководством учителя. Учитель после неверно решенной задачи проговаривает способ проверки (в неявном виде).
III. Усвоение способа проверки и самостоятельное его использование. Цель: запоминание детьми последовательности действий для проверки и формирование умения использовать самостоятельно способ проверки.
Овладение данными способами проверки решения задачи способствует в первую очередь развитию одного из важнейших компонентов учебной деятельности – действия самоконтроля. В ходе проверки развиваются три его вида – прогнозирующий, процессуальный (пошаговый) и итоговый.
Поскольку проверка задачи осуществляется после решения задачи, то приемы проверки правильности решения задачи можно отнести и кэтапу работы над задачей после её решения.
3. Какой из приемов проверки не всегда можно применить в начальных классах?
Источник