- Как решать логические и математические задачи
- Решаем логические задачи
- Основные методы решения логических задач
- Метод последовательных рассуждений
- Метод «с конца»
- Решение логических задач с помощью таблиц истинности
- Метод блок-схем
- Урок по математике «Решение задач разными способами»
- Различные способы решения задач и различные формы записи решения
- Страницы работы
- Содержание работы
Как решать логические и математические задачи
Решение задач на логику — отличная гимнастика для ума детей и взрослых на каждый день. На ЛогикЛайк более 3500 заданий с ответами и пояснениями, полноценный учебный комплекс для развития логики и способностей к математике.
Решаем логические задачи
Чтобы научиться решать типовые логические задачи, простые и нестандартные математические задачи, важно знать основные приемы и методы их решения. Ведь решить одну и ту же задачу и прийти к правильному ответу во многих случаях можно разными способами.
Знание и понимание различных методов решения поможет определить, какой способ подойдет лучше в каждом конкретном случае, чтобы выбрать наиболее быстрый и простой путь получения ответа.
К «классическим» логическим задачам относятся текстовые задачи, цель решения которых состоит в распознавании объектов или расположении их в определенном порядке в соответствии с заданными условиями.
Более сложными и увлекательными типами заданий являются задачи, в которых отдельные утверждения являются истинными, а другие ложными. Задачи на перемещение, перекладывание, взвешивание, переливание — самые яркие примеры широкого ряда нестандартных задач на логику.
Основные методы решения логических задач
- метод рассуждений;
- с помощью таблиц истинности;
- метод блок-схем;
- средствами алгебры логики (алгебры высказываний);
- графический (в том числе, «дерево логических условий», метод кругов Эйлера);
- метод математического бильярда.
Давайте рассмотрим подробнее с примерами три популярных способа решения логических задач, которые мы рекомендуем использовать в начальной школе (детям 6-12 лет):
- метод последовательных рассуждений;
- разновидность метода рассуждений — «с конца»;
- табличный способ.
Метод последовательных рассуждений
Самый простой способ решения несложных задач заключается в последовательных рассуждениях с использованием всех известных условий. Выводы из утверждений, являющихся условиями задачи, постепенно приводят к ответу на поставленный вопрос.
На столе лежат Голубой , Зеленый , Коричневый и Оранжевый карандаши.
Третьим лежит карандаш, в имени которого больше всего букв. Голубой карандаш лежит между Коричневым и Оранжевым .
Разложи карандаши в описанном порядке.
Рассуждаем. Последовательно используем условия задачи для формулирования выводов о позиции, на которой должен лежать каждый следующий карандаш.
- Больше всего букв в слове «коричневый», значит, он лежит третьим.
- Известно, что голубой карандаш лежит между коричневым и оранжевым. Справа от коричневого есть только одна позиция, значит, расположить голубой между коричневым и другим карандашом возможно только слева от коричневого.
- Следующий вывод на основе предыдущего: голубой карандаш лежит на второй позиции, а оранжевый — на первой.
- Для зеленого карандаша осталась последняя позиция — он лежит четвертым.
Метод «с конца»
Такой способ решения является разновидностью метода рассуждений и отлично подходит для задач, в которых нам известен результат совершения определенных действий, а вопрос состоит в восстановлении первоначальной картины.
Бабушка испекла для троих внуков рогалики и оставила их на столе. Коля забежал перекусить первым. Сосчитал все рогалики, взял свою долю и убежал.
Аня зашла в дом позже. Она не знала, что Коля уже взял рогалики, сосчитала их и, разделив на троих, взяла свою долю.
Третьим пришел Гена, который тоже разделил остаток выпечки на троих и взял свою долю.
На столе осталось 8 рогаликов.
Сколько рогаликов из восьми оставшихся должен съесть каждый, чтобы в результате все съели поровну?
Начинаем рассуждение «с конца».
Гена оставил для Ани и Коли 8 рогаликов (каждому по 4). Получается, и сам он съел 4 рогалика: 8 + 4 = 12.
Аня оставила для братьев 12 рогаликов (каждому по 6). Значит, и сама она съела 6 штук: 12 + 6 = 18.
Коля оставил ребятам 18 рогаликов. Значит, сам съел 9: 18 + 9 = 27.
Бабушка положила на стол 27 рогаликов, рассчитывая, что каждому достанется по 9 штук. Поскольку Коля уже съел свою долю, Аня должна съесть 3, а Гена — 5 рогаликов.
Решение логических задач с помощью таблиц истинности
Суть метода состоит в фиксации условий задачи и полученных результатов рассуждений в специально составленных под задачу таблицах. В зависимости от того, является высказывание истинным или ложным, соответствующие ячейки таблицы заполняются знаками «+» и «-» либо «1» и «0».
Три спортсмена ( красный , синий и зеленый ) играли в баскетбол.
Когда мяч оказался в корзине, красный воскликнул: «Мяч забросил синий».
Синий возразил: «Мяч забросил зеленый».
Зеленый сказал: «Я не забрасывал».
Кто забросил мяч, если только один из троих сказал неправду?
Сначала таблицу составляют: слева записывают все утверждения, которые содержатся в условии, а сверху — возможные варианты ответа.
Затем таблицу последовательно заполняют: верные утверждения отмечают знаком «+», а ложные утверждения — знаком «-«.
Рассмотрим первый вариант ответа («мяч забросил красный «), проанализируем утверждения, записанные слева, и заполним первый столбик.
Исходя из нашего предположения («мяч забросил красный «), утверждение «мяч забросил синий» — ложь. Ставим в ячейке «-«.
Утверждение «мяч забросил зеленый» также ложь. Заполняем ячейку знаком «-«.
Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».
Рассмотрим второй вариант ответа (предположим, что мяч забросил зеленый ) и заполним второй столбик.
Утверждение «мяч забросил Синий» — ложь. Ставим в ячейке «-«.
Утверждение «мяч забросил зеленый « — истина. Заполняем ячейку знаком «+».
Утверждение зеленого «Я не забрасывал» – ложь. Ставим в ячейке «-«.
И, наконец, третий вариант: предположим, что «мяч забросил синий «.
Тогда утверждение «мяч забросил синий « — истина. Ставим в ячейке «+».
Утверждение «мяч забросил зеленый» — ложь. Заполняем ячейку знаком «-«. Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».
Так как по условию лишь один из троих ребят сказал неправду, в заполненной таблице выбираем такой вариант ответа, где будет только одно ложное утверждение (в столбце один знак «-«). Подходит третий столбец.
Значит, правильный ответ – мяч забросил синий.
Метод блок-схем
Метод блок-схем считается оптимальным вариантом для решения задач на взвешивание и на переливание жидкостей. Альтернативный способ решения этого типа задач — метод перебора вариантов — не всегда является оптимальным, да и назвать его системным довольно сложно.
- графически (блок-схемой) описываем последовательность выполнения операций;
- определяем порядок их выполнения;
- в таблице фиксируем текущие состояния.
Подробнее об этом и других способах решения логических задач с примерами и описанием хода решения мы рассказываем в полном Курсе ЛогикЛайк по развитию логического мышления.
Отгадывайте самые интересные загадки на логику, собранные специально для постоянных читателей нашего блога и учеников LogicLike, решайте логические задачи онлайн вместе с тысячами детей и взрослых!
Учим детей 5-12 лет решать любые логические и математические задачи. Более 3500 занимательных заданий с ответами и пояснениями.
Источник
Урок по математике «Решение задач разными способами»
Тема “Решение задач разными способами”
Вид: закрепление умения решать задачи на основе расширения способа действия.
Цели:
- научить решать задачи арифметическим и алгебраическим способом;
- научить решать усложненные уравнения.
Ход урока
1. Орг. момент.
Эмоционально-психологический настрой на урок. (Цель: создать эмоционально-психологический контроль)
Мне вспомнилась одна пословица “Корень ученья горек, да плод его сладок”. Как вы понимаете эту пословицу?
Она очень подходит к нашему уроку и вы это поймете.
2. Сообщение темы и цели урока.
— Тема нашего урока “Решение задач разными способами”
— Запишите число и тему урока.
3. Актуализация знаний.
— Мы с вами уже решали очень много самых разных задач, а сегодня я предлагаю вам решить необычные задачи, а задачи в которых есть буквенное значение.
(Дети записывают решение в тетради.)
- В зале занято 6 рядов по в мест. Сколько мест занято?
- А сколько свободных мест, если в зале а мест?
- Длина прямоугольника 8 см. Найдите периметр квадрата.
— Можно решить эту задачу? (Эта задача требует пояснения при решении. Если прямоугольник является квадратом, то задача имеет решение, а если нет, то задачу решить нельзя) - Скоро Новый Год и я предлагаю вам задание составить задачу с такими данными.Масса подарка 800 граммов.
4. Решение задачи.
Для ремонта школы привезли в одинаковых банках 90 кг зеленой краски и 180 кг белой краски. Зеленой краски было 18 банок. Сколько купили банок с белой краской?
Работа над задачей идет по плану:
- 1 этап – восприятие задачи.
- 2 этап – поиск плана решения (прикидка ответа)
- 3 этап – выполнение плана.
- 4 этап – проверка (сравнить с прикидкой)
1 способ.
1) 90 : 18 = 5 (кг) – в 1 банке.
2 способ.
1) 180 : 90 = 2 (раза) – во сколько раз за белую краску заплатили больше, чем за зеленую.
2) 18 х 2 = 36 (банок.)
— Ребята, что обозначает часть или целое число 90? 18? 180?
— Где мы еще с вами можем встретить часть и целое? (В уравнении)
5. Физминутка.
Если неизвестное число находится сложением – приседаете,
Вычитанием – руки вверх,
Делением – руки вперед.
А – 7 = 18 35 : а = 7 а + 6 = 10 30 – а = 13 а : 12 = 5 а х 4 = 24
— Назовите уравнения, где а – целое.
Решите уравнения второго столбика (по вариантам)
— Ребята, а что такое уравнение?
— А попробуйте теперь решить в паре такое уравнение:
6. Расширение способа действия.
— Мы с вами решали задачу двумя способами. Это были арифметические способы решения. А давайте попробуем решить эту задачу еще одним способом – с помощью уравнения.
— Что мы возьмем за х?
— Вы уже говорили, что уравнение это равенство. Какая величина в нашей задаче равна, одинаковая?
— Исходя из этих данных составьте в группах уравнение по этой задаче. (180 : х = 90 : 18)
— Молодцы! Это алгебраический способ решения задачи.
7. РРО.
— Мы с вами уже решали задачи разными способами, а сейчас попробуйте записать решение задачи в виде уравнения.
Уровень 1.
Реши задачу, составив уравнение.
На крыше сидело 7 голубей. Когда к ним прилетело еще несколько, их стало 15. Сколько голубей прилетело?
Уровень 2.
Реши задачу, составив уравнение.
В 7 одинаковых коробках 21 кг винограда. Сколько килограммов винограда в 4 таких же коробках?
8. Итог урока.
— Разрешите закончить наш урок, задав вам несколько вопросов.
— С чем мы сегодня познакомились на уроке?
Чему вы научились?
9. Домашнее задание.
1 уровень. Найдите в учебнике задачи, которые можно решить уравнением.
2 уровень. Составьте 2 задачи, которые можно решить уравнением – простым и усложненным.
Источник
Различные способы решения задач и различные формы записи решения
Страницы работы
Содержание работы
С. Е. ЦАРЕВА. Различные способы решения задач и различные формы записи решения// Начальная школа, 1982. — №2. – с.39-41.
На одном из уроков математики во II классе ученик, получив задание “Реши задачу”, спросил: “Каким способом нужно решать: по действиям или выражением”. Учитель ответил: “По действиям”.
Этот диалог показал, что и учитель, и ученик принимают различные формы записи решения за различные способы ее решения. Посещение уроков, беседы с учителями и учащимися позволили нам сделать вывод, что эта ошибка довольно распространена. Смешение же названных понятий приводит к тому, что, когда требуется действительно решить задачу разными способами, учащиеся либо вовсе не понимают задания, либо понимают его с большим трудом. А это, в свою очередь, снижает обучающие и воспитывающие возможности такого важного вида работы над задачей, как решение задач разными способами.
Поэтому мы считаем своевременным обратить внимание учителей на отличие понятий способа решения задачи и формы записи решения задачи.
Задача считается решенной различными способами, если се решения отличаются связями между данными и искомыми, положенными в основу решений, или последовательностью использования этих связей.
Рассмотрим, например, задачу № 522 из учебника математики для II класса: “Для уроков труда купили 4 катушки белых ниток, по 10 коп. за катушку, и 6 катушек черных ниток по такой же цене. Сколько денег уплатили за эти нитки?”
Эта задача может быть решена двумя арифметическими способами.
При первом из них, наиболее очевидном, первоначально определяют стоимость черных ниток: (10-4)-коп., затем стоимость белых ниток: (10-6) коп. и, наконец, стоимость всех ниток.
При втором способе замечаем, что цена 1 катушки белых ниток та же, что и черных, поэтому вначале можно узнать, сколько всего катушек ниток купили (6+4), а затем определить стоимость всех этих ниток
Запись решения, для каждого способа может быть выполнена в нескольких формах. Покажем все эти формы для каждого способа решения.
Запись решения по действиям с планом.
1. Сколько стоят белые нитки? 10·4 = 40 (коп.)
2. Сколько стоят черные нитки? 10·6=60 (коп.)
3. Сколько денег уплатили за все эти нитки?
1. Сколько всего катушек с нитками купили?
2. Сколько денег уплатили за все эти нитки?
В настоящее время эта форма записи решения задач в начальной школе практически не применяется. Однако мы считаем, что ознакомить с ней учащихся полезно и ее можно использовать на уроках математики, хотя и значительно реже, чем другие формы.
Рассмотрим другую форму записи решения той же задачи — это запись решения по действиям с пояснениями.
1. 10 · 4 =40 (коп) — стоимость белых ниток,
2. 10 ·6 = 60 (коп) — стоимость черных ниток.
3. 40+60=100 (коп.) — стоимость всех ниток.
4. 100 коп.= 1 руб.
1. 6+4 = 10 (шт.) — всего купили катушек ниток.
2. 10·10 = 100 (коп) — стоимость всех ниток.
3. 100 коп. = 1 руб.
Решение задачи можно также оформить по действиям без пояснений.
3. 40 + 60=100 (коп).
4. 100 коп. = 1 руб.
2. 10 · 10=100 (коп).
3. 100 коп.= 1 руб.
Ответ: все нитки стоят 1 руб.
Ответ: все нитки стоят 1 руб.
По задаче можно также составить выражение и найти его значение.
10 · 4+10 · 6=100 (коп)
Ответ: все нитки стоят 1 руб
Ответ: все нитки стоят 1 руб.
Запись решения в этой форме осуществляется учащимися в два этапа. Вначале составляется выражение, затем учащиеся находят его значение, после чего запись решения приобретает вид равенства, в левой части которого записано выражение, составленное по задаче, а в правой части — его значение.
Ни в коем случае нельзя называть запись 10 · 4 + 10 · 6 = 100 выражением, так как это противоречит тому определению понятия выражения, которое положено в основу изучения этого понятия в школе. Математическое выражение составляется из цифр, букв, знаков арифметических действий и скобок, но не содержит знаков математических отношений: равенства, неравенства и др. Два математических выражения, соединенные знаком равенства, образуют равенство.
Приведенная выше запись — это равенство, левая часть которого есть выражение, составленное по задаче (10 · 4 + 10 ··6), а правая часть — выражение, состоящее всего лишь из одного числа (100), являющегося значением предыдущего выражения.
При проверке решения задачи, записанной в этой форме, учащимся можно дать такие задания:
1. Прочитайте выражение, составленное по задаче.
При выполнении этого задания учащиеся должны прочитать только левую часть равенства. (Сумма двух произведений 10·4 и 10·6.) После чтения выражения можно задать вопросы, ответы на которые покажут, как учащиеся понимают смысл каждой части выражения (10 — 4 и 10 — 6) и всего выражения в целом (10 · 4 +10 · 6): что означает произведение десяти и четырех? десяти и шести? что означает сумма этих произведений?
2. Назовите значение этого выражения. (Значение составленного по задаче выражения равно 100.)
3. Дайте ответ на вопрос задачи. (Все нитки стоят 100 коп., т. е. 1 руб.)
При решении задач следует правильно употреблять в своей речи соответствующие термины: Решите задачу и запишите решение по действиям с пояснениями. Решите задачу двумя способами, записав каждое решение в виде равенства, левая часть которого — выражение, составленное по задаче. Решите задачу двумя способами. Составьте соответствующие выражения и найдите их значения. Решите задачу и запишите решение вначале по действиям с пояснениями, а затем в виде выражения. Найдите значение этого выражения. Дайте ответ на вопрос задачи.
Источник