Смежные углы. Теоремы. Следствия
Содержание
Смежные углы
Проведите на листе прямую $a$ и отметьте на ней три точки: $A, B, C$ так, чтобы точка $B$ лежала между точками $A$ и $C$. Из точки $B$ проведите луч, который не совпадает с прямой $a$, и отметьте на нем точку $D$.
На чертеже вы увидите два угла: $\angle ABD$ и $\angle DBC$. У них общая вершина и одна общая сторона. А другие две стороны этих углов являются дополнительными полупрямыми. Такие углы называются смежными.
Углы $\angle ABD$ и $\angle DBC$ смежные
Смежными углами называются углы, которые имеют общую вершину и одну сторону, а другие стороны этих углов являются дополнительными полупрямыми
Сколько может быть смежных углов?
Смежных углов может быть не только два. Теоретически, их количество может быть бесконечно большим, потому что из точки на прямой можно провести неограниченное количество лучей, лежащих в одной полуплоскости.
Теорема о смежных углах
Сумма смежных углов равна $180 \degree$. Градусную меру одного из смежных углов можно узнать, вычтя сумму всех смежных с ним углов из $180 \degree$
Утверждение о том, что сумма смежных углов равна $180 \degree$ называется теоремой о смежных углах. Ее доказательство просто и базируется на знании того, что любой луч, проведенный из вершины угла, и проходящий по его внутренней области, делит этот угол на два угла, сумма которых равна первому углу.
Доказательство теоремы о смежных углах
- Пусть $a$ – прямая,
$B \in a$,
$A, C \in a$
$B$ лежит между $A$ и $C$.
Тогда $ \angle ABC$ – развернутый угол = $180 \degree$. - Относительного развернутого угла считается, что обе области, на которые он делит плоскость, являются его внутренними областями.
Значит, любой луч, проведенный из точки $O$, будет лежать во внутренней области $ \angle ABC$. - Известно, что сумма углов, на которые делит угол луч, исходящий из его вершины и лежащий в его внутренней области, равна исходному углу.
Проведем из точки $B$ луч $BD$.
Он разделит $ \angle ABC$ на углы $ \angle ABD$ и $ \angle DBC$.
$ \angle ABD + \angle DBC = \angle ABC = 180 \degree$.
Углы $\angle ABD$ и $\angle DBC$ смежные
Очевидно, что аналогично теорема может быть доказана для любого количества смежных углов.
Следствие из теоремы о смежных углаx
Теорема о смежных углах имеет следствие.
Следствием теоремы называется логический вывод, следующий из теоремы, и не требующий отдельного доказательства.
Следствие из теоремы о смежных углаx: если некоторые два угла равны, то равны и смежные с ними углы.
Задача 1
Найти угол, смежный с $ \angle AOB$ если $ \angle AOB = 30 \degree$.
Короткая запись условия:
- $ \angle AOB= 30 \degree$;
- $ \angle AOC$ – смежный с $ \angle AOB$. (B этом случае мы сами принимаем решение о том, как будет называться смежный угол, но сохраняем логику: смежные углы имеют общую вершину и одну общую сторону).
Найти: $ \angle AOC$.
Решение и чертеж:
$ \angle AOC$ и $ \angle AOB$ – смежные.
Значит, $ \angle AOC + \angle AOB = 180 \degree$
Отсюда $ \angle AOC = 180 \degree-\angle AOB = 180\degree-30\degree = 150 \degree$.
Источник
Геометрия. 7 класс
Конспект урока
Смежные и вертикальные углы. Аксиомы и теоремы
Перечень вопросов, рассматриваемых в теме:
- Понятие смежных и вертикальных углов
- Свойства смежных и вертикальных углов
- Отличие аксиомы от теоремы
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.
Свойства смежных углов:
- Сумма смежных углов равна 180 0 .
- Если два угла равны, то и смежные с ними углы равны.
- Угол, смежный с прямым углом, есть прямой угол.
Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Свойство вертикальных углов: вертикальные углы равны.
Аксиома– положение, принимаемое без доказательств.
- Атанасян Л. С. Геометрия: 7 – 9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
- Погорелов А. В. Геометрия: 7 – 9 класс. // Погорелов А. В. – М.: Просвещение, 2017. – 224 с.
Теоретический материал для самостоятельного изучения
Давайте построим развёрнутый угол АОС и проведём в нём луч ОВ. В результате у нас получилось два угла ∠АОВ – острый угол и ∠ВОС– тупой угол. Стороны АО и ОС – продолжают друг друга, ВО– общая сторона. Углы АОВ и ВОС – это смежные углы. На основании этого сформулируем определение смежных углов.
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.
Обратите, внимание, что смежные углы АОВ и ВОС лежат на развёрнутом угле АОС. Отсюда можно сделать вывод: сумма смежных углов равна 180 о .
Свойство смежных углов: сумма смежных углов равна 180 о .
Давайте докажем это свойство.
Доказательство. Пусть углы ∠АОВ и ∠ВОС – смежные, луч ОВ – проходит между сторонами развёрнутого угла ∠АОС. Поэтому, сумма углов ∠АОВ и ∠ВОС равна ∠АОС, а этот угол развёрнутый, он равен 180 о . Свойство доказано.
Укажем ещё одно свойство смежных углов.
- Если два угла равны, то и смежные с ними углы равны.
Сейчас давайте вспомним определение прямого угла: угол, равный 90 0 , называется прямым углом. Опираясь на свойство суммы смежных углов, можно сделать вывод: угол, смежный с прямым углом, есть прямой угол.
Теперь построим две пересекающиеся прямые, АС и BD. Посмотрите, при пересечении прямых у нас получилось четыре угла: ∠АОВ, ∠АОD, ∠CОD, ∠BОC. Из них попарно являются смежными углы: ∠АОВ и ∠АОD, ∠АОD и ∠CОD, ∠CОD и ∠BОC, ∠АОВ и ∠BОC.
Углы, которые не являются смежными:
∠АОВ и ∠CОD; ∠АОD и ∠BОC. Пары этих углов называются вертикальными углами.
Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Свойство вертикальных углов: вертикальные углы равны. Убедимся в справедливости этого свойства, докажем его.
Доказательство. Посмотрим на чертёж: пары углов 1 и 2, 2 и 3, 3 и 4, 4 и 1– смежные углы. Угол 2 одновременно является смежным с углом 1 и с углом 3. По свойству смежных углов
∠1+ ∠2= 180 0 и ∠3+ ∠2= 180 0 . Получаем, что ∠1+ ∠2= ∠3+ ∠2, значит, ∠1= ∠3. Углы ∠1 и ∠3 – вертикальные. Мы доказали справедливость этого свойства.
Свойства смежных и вертикальных углов, которые мы сегодня рассмотрели– в геометрии называются теоремами. Правильность утверждения о свойстве той или иной геометрической фигуры устанавливается путём рассуждения. Это рассуждение называется доказательством. А само утверждение, которое доказывается, называется теоремой.
На предыдущих уроках вы познакомились с понятием аксиомы.
В чём же различие между аксиомой и теоремой? Ответ на этот вопрос таков: аксиома – положение, принимаемое без доказательств.
Разбор решения заданий тренировочного модуля
№1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.
Используя чертёж, найдите угол ∠ВОК.
Ответ: ∠ВОК=____ 0
Решение. Воспользуемся свойством смежных углов: сумма смежных углов равна 180 0 . По условию задачи ∠АОК= 11 0 , то ∠ВОК+ ∠АОК= 180 0
∠ВОК+ 11 0 = 180 0
∠ВОК= 180 0 – 11 0 = 169 0 .
Ответ: ∠ВОК= 169 0
№2. Тип задания: единичный / множественный выбор.
Используя чертёж, найдите угол ∠AOD.
Решение. На чертеже указано, что углы ∠СОЕ= ∠DOE. Значит, ∠COD= ∠СОЕ+ ∠DOE= 32 0 + 32 0 = 64 0 . ∠AOD смежный с углом ∠COD, по свойству смежных углов: ∠AOD= 180 0 –∠COD= 180 0 – 64 0 =116 0 .
№3. Тип задания: выделение цветом.
Используя чертёж, найдите градусную меру угла ∠BMD, если ∠AMD= 125 0 , ∠BMC= 115 0 .
Выделите верный ответ из списка:
60 0 ; 30 0 ; 75 0 ; 90 0
Решение. По чертежу можно увидеть, что ∠BМD является частью ∠AMD и ∠BMC. Рассмотрим ∠DMC и ∠AMD. Эти углы – смежные, т.е. их сумма равна 180 0 . Значит, зная градусную меру ∠AMD, мы сможем найти градусную меру ∠DMC= 180 0 –∠AMD= 180 0 -–125 0 = 55 0 . Теперь рассмотрим ∠BMC= ∠BMD+ ∠DMC. Мы знаем градусные меры ∠BMC и ∠DMC, значит, мы сможем найти градусную меру ∠BMD.
Источник
Геометрия. 7 класс
Конспект урока
Смежные и вертикальные углы. Аксиомы и теоремы
Перечень вопросов, рассматриваемых в теме:
- Понятие смежных и вертикальных углов
- Свойства смежных и вертикальных углов
- Отличие аксиомы от теоремы
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.
Свойства смежных углов:
- Сумма смежных углов равна 180 0 .
- Если два угла равны, то и смежные с ними углы равны.
- Угол, смежный с прямым углом, есть прямой угол.
Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Свойство вертикальных углов: вертикальные углы равны.
Аксиома– положение, принимаемое без доказательств.
- Атанасян Л. С. Геометрия: 7 – 9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
- Погорелов А. В. Геометрия: 7 – 9 класс. // Погорелов А. В. – М.: Просвещение, 2017. – 224 с.
Теоретический материал для самостоятельного изучения
Давайте построим развёрнутый угол АОС и проведём в нём луч ОВ. В результате у нас получилось два угла ∠АОВ – острый угол и ∠ВОС– тупой угол. Стороны АО и ОС – продолжают друг друга, ВО– общая сторона. Углы АОВ и ВОС – это смежные углы. На основании этого сформулируем определение смежных углов.
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.
Обратите, внимание, что смежные углы АОВ и ВОС лежат на развёрнутом угле АОС. Отсюда можно сделать вывод: сумма смежных углов равна 180 о .
Свойство смежных углов: сумма смежных углов равна 180 о .
Давайте докажем это свойство.
Доказательство. Пусть углы ∠АОВ и ∠ВОС – смежные, луч ОВ – проходит между сторонами развёрнутого угла ∠АОС. Поэтому, сумма углов ∠АОВ и ∠ВОС равна ∠АОС, а этот угол развёрнутый, он равен 180 о . Свойство доказано.
Укажем ещё одно свойство смежных углов.
- Если два угла равны, то и смежные с ними углы равны.
Сейчас давайте вспомним определение прямого угла: угол, равный 90 0 , называется прямым углом. Опираясь на свойство суммы смежных углов, можно сделать вывод: угол, смежный с прямым углом, есть прямой угол.
Теперь построим две пересекающиеся прямые, АС и BD. Посмотрите, при пересечении прямых у нас получилось четыре угла: ∠АОВ, ∠АОD, ∠CОD, ∠BОC. Из них попарно являются смежными углы: ∠АОВ и ∠АОD, ∠АОD и ∠CОD, ∠CОD и ∠BОC, ∠АОВ и ∠BОC.
Углы, которые не являются смежными:
∠АОВ и ∠CОD; ∠АОD и ∠BОC. Пары этих углов называются вертикальными углами.
Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Свойство вертикальных углов: вертикальные углы равны. Убедимся в справедливости этого свойства, докажем его.
Доказательство. Посмотрим на чертёж: пары углов 1 и 2, 2 и 3, 3 и 4, 4 и 1– смежные углы. Угол 2 одновременно является смежным с углом 1 и с углом 3. По свойству смежных углов
∠1+ ∠2= 180 0 и ∠3+ ∠2= 180 0 . Получаем, что ∠1+ ∠2= ∠3+ ∠2, значит, ∠1= ∠3. Углы ∠1 и ∠3 – вертикальные. Мы доказали справедливость этого свойства.
Свойства смежных и вертикальных углов, которые мы сегодня рассмотрели– в геометрии называются теоремами. Правильность утверждения о свойстве той или иной геометрической фигуры устанавливается путём рассуждения. Это рассуждение называется доказательством. А само утверждение, которое доказывается, называется теоремой.
На предыдущих уроках вы познакомились с понятием аксиомы.
В чём же различие между аксиомой и теоремой? Ответ на этот вопрос таков: аксиома – положение, принимаемое без доказательств.
Разбор решения заданий тренировочного модуля
№1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.
Используя чертёж, найдите угол ∠ВОК.
Ответ: ∠ВОК=____ 0
Решение. Воспользуемся свойством смежных углов: сумма смежных углов равна 180 0 . По условию задачи ∠АОК= 11 0 , то ∠ВОК+ ∠АОК= 180 0
∠ВОК+ 11 0 = 180 0
∠ВОК= 180 0 – 11 0 = 169 0 .
Ответ: ∠ВОК= 169 0
№2. Тип задания: единичный / множественный выбор.
Используя чертёж, найдите угол ∠AOD.
Решение. На чертеже указано, что углы ∠СОЕ= ∠DOE. Значит, ∠COD= ∠СОЕ+ ∠DOE= 32 0 + 32 0 = 64 0 . ∠AOD смежный с углом ∠COD, по свойству смежных углов: ∠AOD= 180 0 –∠COD= 180 0 – 64 0 =116 0 .
№3. Тип задания: выделение цветом.
Используя чертёж, найдите градусную меру угла ∠BMD, если ∠AMD= 125 0 , ∠BMC= 115 0 .
Выделите верный ответ из списка:
60 0 ; 30 0 ; 75 0 ; 90 0
Решение. По чертежу можно увидеть, что ∠BМD является частью ∠AMD и ∠BMC. Рассмотрим ∠DMC и ∠AMD. Эти углы – смежные, т.е. их сумма равна 180 0 . Значит, зная градусную меру ∠AMD, мы сможем найти градусную меру ∠DMC= 180 0 –∠AMD= 180 0 -–125 0 = 55 0 . Теперь рассмотрим ∠BMC= ∠BMD+ ∠DMC. Мы знаем градусные меры ∠BMC и ∠DMC, значит, мы сможем найти градусную меру ∠BMD.
Источник