«Чистый металл», или Электролитическое рафинирование меди
Рафинирование — заключительный этап в цепочке получения из медной руды «чистого» металла. Он состоит из двух последовательных этапов — пирометаллургическое и электролитическое рафинирование. В первом черновая медь (содержит до 4 % примесей) обрабатывается в печах и из неё удаляются все примеси, кроме включений серебра, золота, селена и теллура, при этом чистота основного металла может достичь 99,6 %. Во втором с помощью электролитических ванн получают полностью очищенную медь, доля примесей в которой не превышает 0,001 %.
Рассмотрим подробнее процесс электролитического рафинирования. Речь идёт исключительно о промышленном производстве, в работе чаще всего используются гальванические ванны объемом 4-12 м 3 метра, в качестве электролита выступает смесь из сернокислой меди (CuSO4), подкисленной серной кислотой (H2SO4). В смесь погружаются аноды из меди, прошедшей пирометаллургическое рафинирование, и катоды из «чистой» меди. В ходе электролиза все примеси остаются в растворе электролита, а на катоде оседает очищенный металл. После завершения процесса катод, по сути, представляет собой готовый слиток меди, который можно как отправить предприятиям-потребителям напрямую, так и переплавить в слитки или иной требуемый тип проката. Часть «вымытых» из меди примесей оседает на дно ванны (т.н. шлам), в дальнейшем их можно подвергнуть последующей переработке с целью получения ценных металлов.
Промышленный процесс электролитического рафинирования предполагает работу с большими объёмами металлов, электролитов и, как следствие, высокие сопутствующие затраты (стоимость электролитов, электричество, потери и т. д.). В ходе рафинирования анод («загрязнённая» медь) постепенно растворяется, теряя в объёме — часть примесей оседает на дно ванны, часть растворяется в электролите. При этом чистая медь нарастает на катоде, постепенно увеличивая его в размерах. Начальная фаза изображена на рисунке ниже.
В рафинировании меди применяется такое понятие как экономическая плотность тока — плотность тока, при которой затраты электроэнергии на получение 1 тонны чистой меди будут минимальными (не путать с таковой при расчете сечения проводов, когда идет расчет электрических потерь в ЛЭП).
При этом время процесса зачастую бывает не оптимальным или вовсе не принимается во внимание из-за решающей роли стоимости электричества. Так, в среднем, на растворение анода требуется 20-30 суток, а катоды достигают оптимального размера за 6-12 суток при стандартной плотности тока 170-200 А/м 2 и напряжении между анодом и катодом 0,3-0,4 В. Расход электроэнергии при этом составляет в среднем 230-350 кВт⋅ч на 1 тонну меди.
Тем не менее, время тоже является важным фактором, напрямую влияющим как на себестоимость процесса получения медного проката, так и на общую производительность предприятия. Уменьшить время процесса рафинирования можно одним способом — увеличением плотности тока до более высоких, по сравнению со стандартными, значений. При этом, разумеется, придётся изменять многие параметры процесса, чтобы использование токов высокой плотности оставалось в рамках «экономической плотности». Для выполнения этого условия в ход идут различные методики, дополняющие друг друга:
- Поиск сочетаний поверхностно-активных веществ (ПАВ), которые улучшают свойства электролита.
- Использование различных схем циркуляции электролита, позволяющих повысить скорость до 20 л/мин на 1 см 2 поверхности (при этом плотность тока может достигать 860 А/м 2 ).
- Применение реверсного тока в процессе рафинирования. Оптимальным на данный момент является соотношение прямого и реверсного тока 200:10. Этот метод является в настоящее время самым эффективным, но требует надёжного источника питания, позволяющего генерировать импульсы тока, строго соответствующие заданным параметрам.
Все описанные выше средства в настоящее время активно исследуются и совершенствуются на многих металлургических предприятиях в России и за рубежом. Основной их целью является не только ускорение процесса, но и обеспечение его непрерывности и повышение эффективности, в том числе экономической.
Первые два способа, как правило, обкатываются непосредственно на предприятиях в ходе экспериментов:
- проверяются новые комбинации ПАВ,
- меняется состав электролита,
- строятся новые системы подачи электролита для повышения скорости его циркуляции.
Использование же реверсных токов зачастую становится самым доступным методом — для его внедрения в промышленный процесс достаточно изменить схему питания гальванической ванны, применив современный источник тока и обеспечив циркуляцию электролита.
Хорошим решением этой задачи будет использование источников питания российского предприятия «Навиком», разрабатывающего источники питания для промышленного применения.
Источник
Способ электролитического получения меди
Владельцы патента RU 2541237:
Изобретение относится к металлургической отрасли, в частности к способу получения меди. Способ электролитического получения меди включает электролитическое анодное растворение медьсодержащего сырья в сернокислом медьсодержащем электролите с осаждением меди на катоде. При этом электролит предварительно дегазируют. Образующийся в процессе электролиза водород эвакуируют. Медьсодержащее сырье, загруженное в кассету, в процессе электролитического растворения периодически подвергают кратковременному в течение 5 с ультразвуковому воздействию с плотностью мощности 2-4 Вт/см 3 . Техническим результатом является ускорение процесса, снижение удельного расхода электроэнергии и повышение качества конечного продукта за счет механоактивации и очистки медьсодержащего сырья. 1 табл., 2 пр.
Изобретение относится к металлургической отрасли, в частности получению высококачественной меди методом электролиза, и предназначено для ускорения процесса электролитического получения меди из медьсодержащего сырья растворением анода в электролите и переходом ионов меди на катод, с повышением качества конечного продукта.
Известен способ получения высококачественной меди, имеющей чистоту порядка 99,97±0,02%, основанный на электролитическом рафинировании анодных пластин [Кнорозов Б.В. Технология металлов. / Б.В. Кнорозов [и др.]. — М.: Металлургия, 1978. С.903] в электролите, содержащем серную кислоту и сернокислую медь (CuSO4).
Существенными недостатками указанного способа являются:
— большая продолжительность растворения анодов (20÷30 суток);
— значительный удельный расход электроэнергии (на 1 т катодной меди составляет 200÷400 кВт·ч).
Известен также способ получения высококачественной меди [RU 2455374, опубл. 10.07.2012], при реализации которого электролитическое рафинирование ускоряют путем установки между анодом и катодом решетки с отрицательным потенциалом, увеличивающим (как полагают авторы) скорость движения ионов металла, и ускоряющим процесс электролиза. Кроме того, для более быстрого растворения анода на его торцевые поверхности (сверху, снизу, слева, справа) подается ультразвук. Ультразвуковые колебания, возбуждаемые магнитострикционными преобразователями, (по мнению авторов) ослабляют связи между ионами, что способствует более быстрому растворению анода.
Существенные недостатки указанного метода, обусловленные (по нашему мнению) недостаточно ясными представлениями авторов о процессах, протекающих в акустических полях в жидких средах, а также о влиянии ультразвука на поверхность твердого тела в жидкости, заключаются в следующем:
— давно известно, что непрерывное действие ультразвука на жидкости сопровождаются смыванием с поверхности твердых тел, контактирующих с этими жидкостями (в данном случае, по крайней мере, с поверхности анодов), частиц основных тел и частиц загрязняющих их поверхность веществ, последующее диспергирование смытых частиц в жидкости [Бергман Л., Ультразвук и его применение в науке и технике. М., 1956, 1250 с., RU 2090662, опубл. 20.09.1997], а применительно к рассматриваемому случаю — ультразвуковое воздействие приводит к загрязнению электролита посторонними веществами;
— установленная между анодом и катодом металлическая решетка, к которой «подводится параллельно катоду напряжение», в соответствии с наблюдениями Х.К. Эрстеда еще в 1820 году, не может создать магнитное поле [Савельев И.В., Курс общей физики в 3-х томах, 2011], а следовательно, за счет магнитного поля не «увеличивает скорость движения ионов металла, тем самым ускоряя процесс электролиза».
Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения высококачественной меди [RU 2455374, опубл. 10.07.2012] с ускорением электролитического рафинирования путем установки между анодом и катодом решетки с отрицательным потенциалом, ускоряющим процесс электролиза, и воздействием на торцевые поверхности анодных пластин ультразвука.
Технический результат достигается тем, что электролит предварительно дегазируют, образующийся в процессе электролиза водород эвакуируют, а медьсодержащее сырье, загруженное в кассету, в процессе электролитического растворения периодически подвергают кратковременному ультразвуковому воздействию.
Предлагаемый способ позволяет стабилизировать расход электроэнергии в процессе электролитического анодного растворения за счет ультразвукового воздействия, которое способствует очистке поверхности гранул медьсодержащего сырья, и улучшить качество конечного продукта.
Поставленная в заявленном изобретении задача решается способом, включающим последовательно следующие действия:
— сернокислый медьсодержащий электролит дегазируют, подвергая воздействию ультразвука кавитационных интенсивностей, и вводят в электролизер;
— образец медьсодержащего сырья, включающего около 90% меди, а также
1,5% железа и 1% свинца, помещают в токопроводящую кассету, подключенную к анодной клемме источника напряжения, а пластинчатые катоды помещают по сторонам от кассеты;
— действуют ультразвуком с частотой 18÷44 кГц с плотностью энергии 3 Вт/см в течение 5÷15 с на кассету через электролит, в результате чего поверхность гранул очищается, и начинают процесс электролитического растворения, включая электрический ток и выдерживая разность потенциалов между анодом и катодом в пределах 0,5±0,2 В;
— проводят процесс электролитического растворения, постоянно эвакуируя образующийся газообразный водород, а также контролируя разность потенциалов между анодом и катодом, и при повышении этой разности до
0,8÷0,9 В, (как правило, через 25-35 мин после начала цикла), свидетельствующей о снижении электропроводности системы за счет загрязнения поверхности гранул сырья в анодной кассете, на 6±2 с включают ультразвук, в результате поверхность гранул вновь очищается, после чего разность потенциалов вновь падает до 0,35±0,1 В и следующий цикл продолжается еще примерно 30 мин, и циклы повторяются 8 раз в течение 4 часов;
— катоды вынимаются из электролизера (при необходимости) и слой меди анализируется (либо следующий четырехчасовый цикл проводится с теми же электродами).
Настоящее изобретение направлено на повышение эффективности процесса электролитического получения меди из медьсодержащего сырья, в частности на стабилизацию процесса, его ускорение и повышение качества конечного продукта. Для осуществления заявленного способа, в качестве источника ультразвука кавитационных параметров для дегазации электролизного раствора в равной степени могут быть использованы как пьезоэлектрические или магнитострикционные преобразователи, так и (предпочтительно) гидроакустические преобразователи непрерывного широкого спектра частот, среди которых всегда существуют частоты, резонансные собственным частотам газовых кавитационных пузырьков различных размеров, а для периодической очистки и механоактивации поверхности гранул медьсодержащего сырья предпочтительно использовать магнитострикционный излучатель, расположенный на расстоянии, кратном половине длины волны от центра анодной кассеты так, чтобы кассета оказалась в пучности стоячей волны, возникающей при наложении волн от излучателя и отраженной от кассеты.
Техническая реализация предлагаемого изобретения поясняется следующими примерами, не носящими, однако, ограничивающего характера.
Пример 1 (по прототипу, в оптимальном варианте)
Гранулированное медьсодержащее сырье в количестве 100 г, содержащее 90% меди,
1,5% железа и 1% свинца, помещают в электролизер, вливают в электролизер 3 литра подогретого до 54°С сернокислого медьсодержащего электролита, содержащего 15% серной кислоты и 3% сернокислой меди, вставляют в электролизер заранее взвешенные катоды, включают ток от источника, устанавливая напряжение в 0,5 В, и продолжают процесс в течение 4 часов. Электролизер отключают, оценивают качество слоя на катоде визуально и, взвешивая, оценивают количество меди, осажденное на катоде за время электролиза (4 часа), оценивают чистоту меди ААС методом. Визуальный контроль свидетельствует, что поверхность на катодах неровная, пупырчатая с редкими вкраплениями, прибыль массы катода составляет 380,9 г/м 2 ·ч, чистота осажденной меди — 99,90%.
Пример 2 (по предлагаемому способу в оптимальном варианте)
Гранулированное медьсодержащее сырье в количестве 100 г, содержащее 90% меди,
1,5% железа и 1% свинца, помещают в электролизер, вливают в электролизер 3 литра подогретого до 54°С, предварительного подвергнутого дегазации в ультразвуковом поле гидроакустического преобразователя сернокислого медьсодержащего электролита, содержащего 15% серной кислоты и 3% сернокислой меди, вставляют в электролизер заранее взвешенные катоды, включают ток от источника, выдерживая напряжение в 0,5 В, каждые 0,5 часа, когда разность потенциалов на электродах повышается до 0,7÷0,8 В, анодную кассету с медьсодержащим сырьем подвергают кратковременному (5 с) ультразвуковому воздействию с плотностью мощности 2÷4 Вт/см 3 и продолжают этот периодический процесс в течение 4 часов. Электролизер отключают, оценивают качество слоя на катоде визуально и, взвешивая, оценивают количество меди, осажденное на катоде за полное время электролиза (4 часа), оценивают чистоту меди ААС методом. Визуальный контроль свидетельствует, что поверхность на катодах зеркально гладкая, без посторонних вкраплений, прибыль массы катода составляет 453,0 г/м 2 ·ч, чистота осажденной меди — 99,99%.
Результаты, полученные при электролизе по прототипу и предлагаемому способу, представлены в таблице 1.
Из анализа результатов, приведенных в таблице, следует, что количество и качество осажденной по предлагаемому способу меди существенно выше качества меди, полученной по прототипу, при снижении удельного расхода электроэнергии.
Проведенные нами дополнительные исследования по варьированию различных физических параметров процесса (плотности энергии ультразвука, частоты, степени разрежения, импульсного режима, температуры), при поиске оптимальных режимов электролиза, показали, что изменение каждого из указанных параметров как в сторону увеличения, так и уменьшения (при постоянстве остальных параметров) снижало показатели эффективности электролитического анодного растворения на 15÷45%.
Исследования показали, что параметры заявленного способа в том виде, как он охарактеризован в изложенной формуле изобретения, близки к оптимальным и способ может быть осуществлен с помощью описанных в заявке средств и методов.
Способ электролитического получения меди, включающий электролитическое анодное растворение медьсодержащего сырья в сернокислом медьсодержащем электролите с осаждением меди на катоде, отличающийся тем, что электролит предварительно дегазируют, образующийся в процессе электролиза водород эвакуируют, а медьсодержащее сырье, загруженное в кассету, в процессе электролитического растворения периодически подвергают кратковременному в течение 5 с ультразвуковому воздействию с плотностью мощности 2-4 Вт/см 3 .
Источник