- СПИСОК ЛИТЕРАТУРЫ ОНЛАЙН
- Как рассчитать темп роста и прироста?
- Расчет темпа роста и прироста
- Расчет средних темпов роста и прироста
- Расчет базисного темпа роста и базисного темпа прироста
- Расчет цепного темпа роста и цепного темпа прироста
- Задача №56. Расчёт аналитических показателей динамики
- Решение:
- Аналитические показатели динамики
СПИСОК ЛИТЕРАТУРЫ ОНЛАЙН
Как рассчитать темп роста и прироста?
Темп роста — это прирост какой-либо изучаемой величины за один временной период (обычно применяется к году).
Темп прироста — это прирост какой либо изучаемой величины за один временной период за вычетом 100%.
Темп роста и темп прироста измеряются в процентах и являются относительными величинами. Темп роста — всегда величина положительная, темп прироста может быть отрицательным. Темп прироста равен темп роста минус 100%.
Теперь рассмотрим расчет темпа роста и темпа прироста более подробно.
Расчет темпа роста и прироста
Для наглядности СКАЧАЙТЕ ФАЙЛ РАСЧЕТА, в котором отражен расчет: темп роста и темп прироста. Обратите внимание: на первом листе книги файла расчетов представлен расчет, а на втором листе книги файла расчетов — формулы расчета темпа роста и прироста.
На рисунке представлен пример расчета темпа роста и прироста:
Для наглядности на рисунке ниже приведен этот же пример, только с открытыми формулами:
На рисунке видно, что определение темпа роста осуществляется путем деления Показателя 2 на Показатель 1 и умножения на 100%. При этом темп прироста равен: деление показателя 2 на показатель 1 умножение на 100% и минус 100%, то есть темп прироста равен темп роста минус 100%.
Расчет средних темпов роста и прироста
Так же на рисунках указано как рассчитывается средний темп роста и средний темп прироста. Для определения среднего темпа роста необходимо сложить показатели за все четыре периоды и разделить полученную сумму на количество периодов, то есть на 4. Аналогично рассчитывается средний темп прироста — сумма темпов прироста за все периоды делится на количество периодов.
Расчет базисного темпа роста и базисного темпа прироста
Для наглядности СКАЧАЙТЕ ФАЙЛ РАСЧЕТА, в котором отражен расчет: базисный темп роста, базисный темп прироста, цепной темп роста, цепной темп прироста. Обратите внимание: на первом листе книги файла расчетов представлен расчет, а на втором листе книги файла расчетов — формулы расчета темпа роста и прироста.
На рисунке ниже представлен расчет базисного темпа роста и прироста (таблицы 2 и 3):
Расчет базисного темпа роста заключается в том, что необходимо произвести расчет темпов роста всех показателей. Обратите внимание, что тем роста (прироста) первого показателя рассчитать нельзя.
В примере за базисный показатель принят Показатель 1, поэтому базисный темп роста или базисный темп прироста рассчитывается исходя из этого положения, то есть при расчете базисного темпа роста Показатель 2 делим на Показатель 1 и умножаем на 100, далее Показатель 3 делим на Показатель 1 и умножаем на 100, далее Показатель 3 делим на Показатель 1 и умножаем на 100, при расчете базисного темпа прироста из каждого показателя базисного темпа роста вычитаем 100.
Расчет цепного темпа роста и цепного темпа прироста
На рисунке выше представлен расчет базисного темпа роста и прироста (таблицы 4 и 5).
Расчет цепного темпа роста заключается в том, что необходимо произвести расчет темпов роста всех показателей. Обратите внимание, что тем роста (прироста) первого показателя рассчитать нельзя. В отличие от базисного темпа роста или прироста, цепной темп роста или прироста рассчитывается из текущего и предыдущего показателя.
То есть цепной темп роста или цепной темп прироста рассчитывается следующим образом: Показатель 2 делим на Показатель 1 и умножаем на 100, далее Показатель 3 делим на Показатель 2 и умножаем на 100, далее Показатель 4 делим на Показатель 3 и умножаем на 100, при расчете цепного темпа прироста из каждого показателя цепного темпа роста вычитаем 100.
Для того, чтобы закрепить полученную информацию, обратите внимание на рисунок ниже, в котором отражены формулы расчета: базисный темп роста, базисный темп прироста, цепной темп роста, цепной темп прироста:
Обратите внимание, что при расчете базисного и цепного показателей, значения базисного и цепного темпов роста и прироста равны, так как при избрании в качестве базисного показателя первого из ряда, они рассчитываются одинаково.
Источник
Задача №56. Расчёт аналитических показателей динамики
Добыча нефти характеризуется следующими данными:
Годы | Добыча нефти, тыс. т |
---|---|
1-ый | 150 |
2-ой | 210 |
3-ий | 248 |
4-ый | 286 |
5-ый | 320 |
6-ой | 337 |
Произвести анализ ряда динамики по:
1) показателям, характеризующим рост добычи нефти (на цепной и базисной основе): абсолютный прирост, темпы роста и прироста (по годам к базисному году); результаты расчетов изложить в табличной форме;
2) средний уровень и среднегодовой темп ряда динамики;
3) показать взаимосвязь между цепными и базисными показателями.
Решение:
Абсолютный прирост цепной (Δyц) – это разность между текущим уровнем ряда и предыдущим:
Так, во 2-ом г. прирост добычи нефти в сравнении с первым годом составит:
= 210 – 150 = 60 тыс. т.
В 3-ем году прирост добычи нефти в сравнении со 2-м годом составит:
Δyц 3-й год = 248 – 210 = 38 тыс. т.
Аналогично исчисляются абсолютные приросты за последующие годы. Результаты расчётов занесём в таблицу.
Абсолютный прирост базисный (Δyб) – это разность между текущим уровнем ряда и уровнем ряда, выбранным за базу сравнения:
Так как в задании не указано, какой год взять в качестве базисного года, по умолчанию будем считать базисным 1-й год.
Абсолютный прирост базисный во 2-ом г. совпадает с цепным абсолютным приростом в этом году:
Δyб = 210 – 150 = 60 тыс. т
в 3-ем году базисный абсолютный прирост равен:
Δyб = y3 – y2 = 248 – 150 = 98 тыс. т и т.д (гр. 3 расчётной таблицы).
Темп роста (Тр) – отношение уровней ряда динамики, которое выражается в коэффициентах и процентах.
Цепной темп роста исчисляют отношением текущего уровня к предыдущему:
(гр. 5 расчётной таблицы);
базисный – отношением каждого последующего уровня к одному и тому же уровню, принятому за базу сравнения:
(гр. 4 расчётной таблицы).
Темп прироста (Тпр) так же может быть цепной или базисный.
Цепной рассчитывается как отношение абсолютного прироста к предыдущему уровню ряда динамики:
Базисный темп прироста рассчитывается как отношение абсолютного прироста к базисному уровню ряда динамики:
Если предварительно был вычислен темп роста, то темп прироста можно рассчитать как разность между темпами роста и единицей, если темпы роста выражены в коэффициентах:
или как разность между темпами роста и 100%, если темпы роста выражены в процентах:
Тпр= Тр – 100% (гр. 6 и 7 расчётной таблицы).
Годы | Добыча нефти, тыс. т | Абсолютный прирост базисный, тыс. т | Абсолютный прирост цепной, тыс. т | Темп роста базисный, % | Темп роста цепной, % | Темп прироста базисный, % | Темп прироста цепной, % |
---|---|---|---|---|---|---|---|
А | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1-ый | 150 | 0 | — | 100,00 | — | — | — |
2-ой | 210 | 60 | 60 | 140,00 | 140,0 | 40,00 | 40,0 |
3-ий | 248 | 98 | 38 | 165,33 | 118,1 | 65,33 | 18,1 |
4-ый | 286 | 136 | 38 | 190,67 | 115,3 | 90,67 | 15,3 |
5-ый | 320 | 170 | 34 | 213,33 | 111,9 | 113,33 | 11,9 |
6-ой | 337 | 187 | 17 | 224,67 | 105,3 | 124,67 | 5,3 |
Из таблицы видно, что добыча нефти росла от года к году. Однако прирост добычи с каждым годом становился меньше.
2) Средний уровень ряда определяется в данном случае по формуле средней арифметической простой, где в числителе сумма уровней динамического ряда, а в знаменателе их число:
Среднегодовой темп роста ряда динамики рассчитывается по формуле средней геометрической
где ПТр – произведение цепных темпов роста (в коэффициентах),
– конечный базисный темп роста (в коэффициентах),
n – число темпов.
Среднегодовой темп прироста ряда динамики:
Добыча нефти ежегодно возрастала в среднем на 17,6%.
3) Между цепными и базисными темпами роста имеется взаимосвязь:
произведение цепных темпов роста (в коэффициентах) равно конечному базисному темпу роста.
Сумма цепных абсолютных приростов равна конечному базисному абсолютному приросту:
Выводы: С 1 по 6 годы добыча нефти росла от года к году. Объём добычи нефти за эти годы вырос на 124,7%, что в абсолютном выражении составило 187 т. Однако ежегодный прирост добычи с каждым годом снижался. В среднем добыча нефти ежегодно возрастала на 17,6%.
Источник
Аналитические показатели динамики
Расчет аналитических производных показателей динамических рядов.
У нашего движка для создания калькуляторов онлайн появилась новая функциональность — возможность вводить для расчета произвольное число значений, иными словами, появилась входная таблица. Пользователь добавляет/редактирует/удаляет значения, калькулятор их подсчитывает.
Воспользовавшись этим, я немедленно создал калькулятор для расчета аналитических показателей статистических рядов динамики.
Тем более, что пользователь с ником Светлана очень давно просил калькулятор вычисляющий средний темп роста. Наконец-то это стало возможным. Но обо всем по порядку.
Начнем с теории.
Рядами динамики называются ряды расположенных в хронологическом порядке показателей, характеризующих изменение какой-либо величины во времени. Ряды динамики включают два основных элемента: показатели времени — t и соответствующие им показатели величины — Y.
Ряды динамики делятся на моментные и интервальные.
Моментные ряды динамики отображают состояние изучаемой величины на определенные момент времени. Интервальные ряды отображают состояние изучаемой величины за отдельные интервалы времени.
Приведу пример. Допустим, 1 января хлеб стоит 13 рублей, 1 февраля — 14 рублей, 1 марта — 15 рублей, это моментный ряд. Если за январь мы купили 10 буханок хлеба, за февраль — 12 буханок, за март — 14 буханок, это интервальный ряд. Заметим, что интервальный ряд обладает свойством суммарности, т. е. показатели можно складывать, и получится что-то осмысленное, например, потребление хлеба за три месяца.
Имея ряд показателей, можно просчитать всевозможные аналитические производные показатели. Производные показатели могут рассчитываться двумя основными способами — цепным и базисным.
При цепном методе каждый последующий показатель сопоставляется с предыдущим, при базисном — с одним и тем же показателем, принятым за базу сравнения. Обычно это первый показатель ряда.
Рассмотрим некоторые аналитические производные показатели:
Аналитические производные показатели
1. Абсолютный прирост
Разность значений двух показателей ряда динамики.
Базисный абсолютный прирост — разность текущего значения и значения принятого за постоянную базу сравнения
Цепной абсолютный прирост — разность текущего и предыдущего значений
2. Темп роста
Отношение двух уровней ряда (может выражаться в процентах).
Базисный темп роста — отношение текущего значения и значения принятого за постоянную базу сравнения
Цепной темп роста — отношение текущего и предыдущего значений
3. Темп прироста
Отношение абсолютного прироста к сравниваемому показателю.
Базисный темп прироста — отношение абсолютного базисного прироста и значения принятого за постоянную базу сравнения
Цепной темп прироста — отношение абсолютного цепного прироста и предыдущего значения показателя
4. Ускорение
Абсолютное ускорение — разница между абсолютным приростом за данный период и абсолютным приростом за предыдущий период равной длительности. Измеряется только цепным способом
Относительное ускорение — отношение цепного темпа прироста за данный период и цепного темпа прироста за предыдущий период
5. Темп наращивания
Отношение цепных абсолютных приростов к уровню, принятому за постоянную базу сравнения
6. Абсолютное значение одного процента прироста
Отношение абсолютного прироста к темпу прироста, выраженное в процентах.
После раскрытия формула упрощается до
Для получения обобщающих характеристик динамики изучаемого ряда рассчитываются средние показатели динамики.
Средние показатели динамики
1. Средний уровень
Характеризует типичную величину показателей
В интервальном динамическом ряду рассчитывается как простое арифметическое среднее
В моментном динамическом ряду с равными промежутками времени между отсчетами как хронологическое среднее
2. Средний абсолютный прирост
Обобщающий показатель скорости абсолютного изменения значений динамического ряда
3. Средний темп роста
Обобщающий характеристика темпов роста ряда динамики
(корень степени i — 1)
4. Средний темп прироста
Отношение тоже что и между темпом роста и темпом прироста
Все производные и средние показатели, приведенные здесь, рассчитываются в калькуляторе (см. ниже) по мере того, как пользователь вводит значения ряда в таблицу.
На своей личной странице зарегистрированные пользователи могут сохранить калькулятор и запомнить введенные в него значения для повторного использования.
Источник