Как определить что уравнение следует решать алгебраическим способом

Способы решения алгебраических уравнений

Разделы: Математика

Уравнения занимают значительное место в курсе математики средней школы. Остановимся лишь на алгебраических уравнениях, которые разобьем на три группы:

  1. полиномиальные уравнения вида Pn(x) = 0, где Pn(x) — многочлен n-й степени относительно x;
  2. дробно-рациональные уравнения, т.е. содержащие в качестве двух компонент частные двух многочленов;
  3. иррациональные уравнения.

Для ряда приемов даны небольшие теоретические обоснования. Приведено 30 приемов, иллюстрированных более чем 36 примерами. Не надо думать, что приведенный в конкретном примере прием является наиболее рациональным для решения данного примера. Просто надо принять к сведению существование такого подхода к решению уравнений.

Одни и те же подходы (применение тригонометрии, использование однородности, разложение на множители и др.) находят применение не только при решении рациональных, дробно-рациональных, иррациональных уравнений, но и при решении трансцендентных уравнений, неравенств, систем.

При написании использовалась литература:

  1. Рывкин А. А. «Справочник по математике» – М.: Высшая школа, 1987.
  2. Цыпкин А. Г. «Справочник по методам решения задач по математике» – М.: Наука, 1989.
  3. Шарыгин И. Ф. Факультативный курс по математике – М.: Просвещение, 1989.
  4. Сборник задач по математике для поступающих во ВТУЗы / Под ред. Сканави М. И. – Мн.: Вышэйшая школы, 1990.

В этих пособиях можно найти достаточное количество нужных уравнений, конечно, не пренебрегая другими источниками.

1. Докажем теорему: Если уравнение anx n + an–1x n–1 + … + a1x + a0 = 0 (*) с целыми коэффициентами имеет рациональный корень, где p и q взаимно просты, то a0 делится на p, а an делится на q.

Доказательство: Заменим в (*) x на , получим верное числовое равенство умножим обе части равенства на q n :

Правая часть делится на q, значит, и левая должна делиться на q, но т.к. p и q взаимно просты, то p n не делится на q, но тогда an должно делиться на q, иначе левая часть не будет кратна q.

Правая часть кратна p, значит, и левая кратна p, но q n взаимно просты с p, значит a0 кратно p. Теорема доказана.

Доказательство: Делимое равно делителю, умноженному на частное, плюс остаток. Так как делитель — многочлен первой степени, то остаток будет многочленом, степень которого меньше степени делителя, значит, остаток – const. Частное будет многочленом степени n – 1. Тогда

При x = a это равенство имеет вид

из которого следует P(a) = R. Теорема доказана.

Следствие: Если x = a — корень многочлена, то многочлен делится на xa без остатка.

Доказательство: При x = a равенство (***) примет вид 0 = 0 + R, из которого следует, что R = 0. А так как остаток от деления равен нулю, то утверждение доказано.

Пример 1. Решить уравнение 30x 4 + x 3 – 30x 2 + 3x + 4 = 0.

Составим различные несократимые дроби, числители которых — делители свободного члена, т.е. 4, а знаменатели — делители старшего коэффициента, т.е. 30.

В левом столбике в знаменателях участвуют все делители числа 30. Видно, что – 1 — корень многочлена. По следствию из теоремы Безу делим многочлен на x + 1

Для поиска корней многочлена 30x 3 – 29x 2 – x + 4 воспользуемся таблицей дробей. При многочлен примет вид Значит, — корень многочлена.

Читайте также:  Способ передвижения пресмыкающихся 6 букв

2. При решении алгебраических уравнений может быть полезен метод неопределенных коэффициентов.

Пример 2. Решить уравнение x 4 + 2x 3 – 16x 2 + 11x – 2 = 0.

Пусть многочлен представим в виде произведения

где a , b , g , a, b, c коэффициенты, которые желательно подобрать так, чтобы после раскрытия скобок и приведения подобных слагаемых получился исходный многочлен. Раскроем скобки, полагая, что a = a = 1.

Положим c = 1, g = – 2 или c = 2, g = – 1 (подбираем коэффициенты).

b = – 3, тогда b = 5.

Убедимся, что b = 5, g = – 2, b = – 3, c = 1. Такой набор удовлетворяет всем четырем уравнениям, поэтому можем записать

Решив квадратные уравнения, получим корни исходного уравнения.

Ответ:

3. Решение возвратных уравнений

После почленного деления на x k , они решаются подстановкой

Пример 3. Решить уравнение 2x 4 – 3x 3 – 7x 2 –15x + 50 = 0.

Разделим на x 2 , получим

Уравнение примет вид:

Если l = 1, то уравнение вида ax 2k + bx 2k–1 + cx 2k–2 + dx 2k–3 + … + dx 3 + cx 2 + bx + a = 0 называется возвратным (или симметрическим) уравнением степени 2k первого рода.

Пример 4. Решить уравнение 5x 4 + 3x 3 – 16x 2 + 3x + 5 = 0.

Разделим почленно на x 2 . Имеем .

Ответ:

Если l = – 1, то получим уравнение вида

ax 2k + bx 2k–1 + cx 2k–2 + dx 2k–3 + … + dx 3 + cx 2 – bx + a = 0, которое называется возвратным (или симметрическим) уравнением степени 2k второго рода. Решается подстановкой

Пример 5. Решить уравнение 8x 4 – 42x 3 + 29x 2 + 42x + 8 = 0.

Ответ:

Возвратное уравнение нечетной степени имеет корень – 1. Это объясняется тем, что уравнение имеет четное число членов, которые при замене x на – 1 попарно уничтожаются. Поэтому в начале делят многочлен на x + 1, а частное приведет к возвратному уравнению четной степени, решение которого уже рассмотрено.

Пример 6. Решить уравнение 24x 5 + 74x 4 – 123x 3 – 123x 2 + 74x + 24 = 0.

Имеем возвратное уравнение 5-й степени. Один из его корней – 1. После деления на x + 1, получим

24x 4 + 50x 3 – 173x 2 + 50x + 24 = 0

Ответ:

если , то

По биному Ньютона

Замечание 2. Определить по внешнему виду, что уравнение является возвратным не всегда просто, особенно, если . Поэтому в уравнении степени 2n производим почленное деление на x n и, если при этом получается сумма выражений вида , где n = 0, 1, 2 … m, то дальнейшее решение ясно.

Источник

Решение задач алгебраическим методом
методическая разработка по алгебре (5 класс)

Знакомство с алгебраическим методом решения текстовых задач

Скачать:

Вложение Размер
reshenie_tekstovyh_zadach_algebraicheskim_metodo1.docx 26.38 КБ
reshenie_tekstovyh_zadach_algebraicheskim_metodo1.docx 26.38 КБ

Предварительный просмотр:

РЕШЕНИЕ ТЕКСТОВЫХ ЗАДАЧ АЛГЕБРАИЧЕСКИМ МЕТОДОМ

Лиханова В.Е., учитель математики МБОУ «СОШ №12» г. Ноябрьск, ЯНАО

Наряду с арифметическим, практическим методами решения задач ученики 5 класса знакомятся и с алгебраическим методом. Многие ученики сначала не будут принимать новый метод, поэтому роль учителя на данном этапе должна заключаться в том, чтобы показать преимущества данного метода, но ни в коем случае не навязывать его. С этой целью необходимо предлагать задачи, которые арифметически решить трудно.

Особенностями алгебраического метода является введение переменной величины, что позволяет действовать с ней как с явной. Выполняется анализ основных зависимостей между явными и неявными значениями величин, производится моделирование условия задачи в виде уравнения. Если при выборе действий опираемся на сюжетные особенности, то такой метод решения называется алгебраическим. Следует отметить, что в учебнике «Математика 5» авторского коллектива: Г.В.Дорофеев, И.Ф. Шарыгин, Е.А. Бунимович, Л.В. Кузнецова существуют определенные недостатки по обучению решению задач алгебраическим методом. Самым главным из них является недостаточность системы упражнений, готовящих детей к усвоению данного метода, а именно на составление различных выражений по сюжету задач и выяснение их сюжетного смысла.

Необходимые базовые знания для решения задач алгебраическим методом:

  • усвоение понятия переменной величины;
  • умение решать простые и составные уравнения;
  • умение составлять по тексту задачи простые и составные выражения и определять их сюжетный смысл;
  • находить выражения с одинаковым сюжетным смыслом.

Основные этапы формирования умения решать задачи алгебраическим методом:

  1. Подготовительный.
  2. Этап ознакомления с алгоритмом рассуждения и записью решения задачи.
  3. Закрепление, выработка умения.

На первом этапе учитель должен познакомить учащихся с понятием «сюжетный смысл выражения», научить составлять всевозможные выражения по тексту задачи, определять их сюжетный смысл. Это можно сделать через следующую систему упражнений:

  1. Дать текст с числами. Составить по этому тексту несколько выражений, записать их смысл.
  2. Дать текст. Учитель составляет по этому тексту выражения, а ученики объясняют их смысл по тексту.
  3. Предложить задание, подобное предыдущему, но среди выражений должны быть такие, которые не имеют сюжетного смысла по данному тексту.
  4. По предложенному тексту с числами дети сами составляют выражения и определяют их смысл. В заключение находят выражения с одинаковым сюжетным смыслом.
  5. Дать задачу, показать способ обозначения величины, которую требуется найти в вопросе задачи через х, показать способ составления выражений по задаче с использованием этой неизвестной величины как с известной. Определить сюжетный смысл выражений по тексту задачи.
  6. По предложенному тексту учитель показывает сюжетный смысл одного из выражений. Детям предлагается составить выражение с тем же сюжетным смыслом.

У пруда росли липы, осины, березы и ели. Лип росло 12, осин – в 3 раза больше, чем лип, несколько елей, берез – на 5 меньше, чем елей. Составь различные выражения и объясни, что они обозначают.

Учитель предлагает обозначить число елей буквой х , работать с ней как с обыкновенным числом. Можно составить следующие выражения:

12·3 – количество осин,

х-5 – количество берез,

12+х – количество лип и елей,

12+(х-5) – количество лип и берез,

12·3+(х-5)+х –общее количество осин, берез, елей.

Основная задача второго этапа – введение понятия «основание для составления уравнения», введение алгоритма рассуждения и развернутой формы записи решения задачи алгебраическим методом. Деятельность учителя может быть организована следующим образом.

  1. Дать текст задачи. Решить ее арифметическим методом.
  2. Предложить обозначить через х неизвестную величину, значение которой требуется найти.
  3. Составить ряд выражений по тексту и определить их сюжетный смысл.
  4. Найти выражения с одинаковым сюжетным смыслом. Сообщить детям, что если выражения имеют одинаковый смысл, то они равны.
  5. Составить равенство из двух выражений, в одно из которых входит переменная.
  6. Вместе с детьми определить, что данная запись является уравнением.
  7. Решить его и установить, что значение х и есть ответ.
  8. Сообщить учащимся, что сюжетный смысл выражений, которые мы использовали для составления уравнения, будем называть основанием для составления уравнения, а метод решения задачи – алгебраическим.
  9. Решить еще одну задачу таким же методом. Запомнить алгоритм рассуждений и полную форму записи решения задачи.
  10. Решив другую задачу, учитель предлагает проверить правильность решения задачи. Для этого необходимо вспомнить все известные способы проверки правильности решения, которые использовали ранее.
  11. Сообщить детям новый способ проверки. Для этого надо составить уравнение по другому основанию. Сделать вывод.
  12. Сопоставляя решения первой и второй задачи, учитель в процессе фронтальной беседы составляет алгоритм решения задачи алгебраическим методом.

Алгоритм решения задачи алгебраическим методом.

  1. Обозначить буквой неизвестную величину.
  2. Составить выражения.
  3. Выбрать основание.
  4. Составить уравнение.
  5. Решить уравнение.

6. Проверить правильность решения.

Знакомство с новым методом решения задачи можно начать:

  • с простой задачи;
  • сразу с составной.

В первом случае работа будет выполняться достаточно быстро, но учащиеся не увидят преимущества данного метода (ведь задача и так решена !).

Рассмотрим задачу. Ученики изготовили 135 елочных украшений, из них фонариков на 5 больше, чем хлопушек, а снежинок в 3 раза больше, чем снежинок. Сколько хлопушек изготовили дети?

Необходимо показать, что задача решается с помощью уравнения. Для этого надо ввести переменную величину. Обозначить буквой можно как число хлопушек, так и число фонариков, так и число снежинок (проще — число хлопушек). Составляем выражения с переменной.

Хлопушки- ? штук

Фонарики-?, на 5 штук больше 135 штук

Снежинки-?, в 3 раза больше

Пусть х штук хлопушек сделали дети, тогда они изготовили (х+5) штук фонариков, 3х штук снежинок. Всего было сделано (х+(х+5)+3х) штук украшений , а это – 135 штук украшений. Выражения ( х+(х+5)+3х ) и 135 имеют один и тот же сюжетный смысл, значит, их можно приравнять. Требуется подчеркнуть, чту уравнивать можно только выражения, имеющие одинаковый сюжетный смысл. Получится уравнение:

х+(х+5)+3х=135. Обратить внимание, что в уравнении наименования не пишутся. Решим уравнение

Итак, 26 хлопушек сделали дети.

Предложить решить задачу арифметическим методом . Без вспомогательной модели это сделать трудно. Составим схематический чертеж.

Хл.

Ф. 5 ш. 135 ш.

Сн. .

Все украшения можно разделить на 5 равных частей, если бы не было5 штук фонариков. Уберем их, при этом общее количество уменьшится на 5.

1) 135-5=130 (шт.) — украшений всего.

  1. 130:5=26 (шт.) – в одной части , т.е. столько хлопушек сделали дети.

В задачах с пропорциональными величинами желательно использовать таблицу не только для краткой записи содержания, но и для проведения рассуждений при составлении уравнения. Сначала в таблице записывается содержание задачи, а затем (желательно другим цветом) заполняются все пустые графы выражениями с переменной величиной.

Из двух городов, расстояние между которыми 1620 км вышли одновременно навстречу друг другу два поезда, скорость одного на 10 км/ч больше скорости другого и через 18 часов они встретились. Какова скорость каждого поезда?

Скорость

Расстояние

(х+10)км/ч На 10 км/ч больше

Источник

Читайте также:  Обучение школьников способам учебной деятельности
Оцените статью
Разные способы