Как называется решение задач способом составления уравнений называется

Урок математики «Алгебраический и арифметический способы решения задач»

Цели:

  • познакомить с разными способами решения задач;
  • дать представления об алгебраическом способе решения,
  • научить детей выбирать разные способы решения, составлять обратные задачи.

Задачи:

  • развивать логическое мышление,
  • развитие мыслительных операций, таких как анализ, синтез.

Ход урока

1. Разминка

(Учащиеся стоят у своих мест, учитель задаёт вопрос, если ученик ответил верно, то присаживается).

  • Что такое уравнение?
  • Что значит найти корень уравнения
  • Как найти неизвестный множитель? Делитель? Уменьшаемое?
  • Продолжи определения: Скорость – это.
    Чтобы найти расстояние, нужно…
    Чтобы найти время, надо…

2. Проверка домашнего задания

(Дома дети в справочниках искали определения: алгебра, арифметика, геометрия).

Что изучает алгебра? арифметика? геометрия?

  • Алгебра наука, которая изучает вопросы уравнений и неравенств.
  • Геометрия – одна из древнейших частей математики, изучающая пространственные отношения и формы тел.
  • Арифметика –наука о числах и операциях над ними.

(Эти термины понадобятся нам позднее на уроке).

3. Послушайте задачу

В каждой из четырех клеток находится 1 животное. На каждой клетке указаны надписи, но ни одна из них не соответствует действительности. Укажите, кто находится в каждой клетке. Разместите животных по их клеткам (у каждого ребёнка наборное полотно и карточки с изображением животных).

  • Покажите, что у вас получилось. Как вы рассуждали? (На доске выполнить проверку).
  • Каким образом вы решили эту задачу? (Рассуждая, мысля логически).
  • Какая это задача? (Логическая).

Но в основном на уроках математики мы решаем задачи, в которых необходимо выполнять математические преобразования.

4. Прочитайте задачи

  1. С двух верблюдов настригли 12 кг шерсти. Со второго настригли в 3 раза больше, чем с первого. Сколько килограммов шерсти настригли с каждого верблюда?
  2. Леопард весит 340 кг, жираф в 3 раза тяжелее леопарда, а лев на 790 кг легче, чем жираф. На сколько килограммов леопард тяжелее льва?
  3. Два жирафа бежали навстречу друг другу. Один бежал со скоростью 12 м/с, скорость другого 15 м/с. Через сколько секунд они встретятся, если расстояние между ними было 135 метров?

Сравните задачи. Что общего? В чем их отличия?

  • Прочитайте задачу, которую нужно решить, составив уравнение.
  • Прочитайте задачу, которую нужно решить по действиям?
  • Какую задачу можно решить двумя способами?
  • Сформулируйте тему нашего урока.

Разные способы решения задач

5. Решите любую задачу, составив краткую запись (в виде таблицы, чертежа)

Двое работают у доски.

Проверка

  • Как решали первую задачу? (Уравнением).
  • Как называется раздел математики изучающий уравнения? (Алгебра).
  • Как будет называться этот способ решения? (Алгебраический).
  • Какими способами решались вторая и третья задачи? (По действиям).
  • Какой раздел математики изучает это? (Арифметика).
  • Как будет называться этот способ решения? (Арифметический).

(Вывешиваем на доске):

Читайте также:  Народный способ почистить ванную

6. Составить обратные задачи данным и решить их алгебраическим и арифметическим способами

7. Продуктивные задания на воспроизведение новых знаний

Задайте вопросы классу по изученной теме.

  • Какой способ решения задач называется алгебраическим?
  • Какой арифметическим?
  • Как называется способ решения задач с помощью уравнений?

8. Домашнее задание

Составить задачу о животном, которую можно решить алгебраическим способом.

Источник

Статья «Решение задач способом составления уравнения»

Решение задач способом составления уравнения

Современное содержание математического образования направлено главным образом на интеллектуальное развитие младших школьников, формирование культуры и самостоятельности мышления.

Данный аспект является главным в развитии личности ученика, так как мышление влияет на воспитанность человека. Достаточная подготовленность к мыслительной деятельности снимает психологические нагрузки в учении, предупреждает неуспеваемость, сохраняет здоровье.

Важнейшим фактором в развитии мыслительных операций служат педагогические системы развивающего обучения. К такой системе относится методика обучения по УДЕ.

Одна из основных целей технологии УДЕ – создание действенных и эффективных условий для развития познавательных способностей детей, их интеллекта и творческого начала, расширение математического кругозора.

В основу технологии УДЕ положен принцип: чтобы обучать ускоренно и при высоком уровне знаний, необходимо рассматривать целостные группы взаимосвязанных понятий. В триадах задач реализуется фактор дополнительности подсознательных механизмов познания.

Триада означает выполнение учеником на одном уроке:

обращение этого задания и самостоятельное обобщение решенной задачи;

составление новой задачи и её решение.

Этот приём даёт хороший эффект в обучении, так как он побуждает учащихся осмысливать и усваивать материал на основе более высокой степени обучения.

Вопрос преемственности между начальным и средним звеньями обучения очень актуален.

В среднем звене школы ученики, например, на уроках математики обучаются решению задач путём составления уравнения, и учителя сталкиваются с недопониманием учащимися этой темы. А решать задачи путём составления уравнения можно уже в начальной школе с использованием технологии УДЕ.

Сделаем срез методики обучения решению задач путём составления уравнения.

а) Выражение с окошечками: 3 + 1 = 4 + 1 = 4

б) Знакомство с понятиями «слагаемое» и «сумма»:

3 и 1 – слагаемые. Числа, которые складываются, называются слагаемыми.

4 – сумма. Число, которое получается в результате сложения, называется суммой.

в) четверка примеров:

3 + 1 = 4 4 – 1 = 3

1 + 3 = 4 4 – 3 = 1

Триада задач (на нахождение суммы и неизвестного слагаемого)

Источник

Решение задач путем составления уравнения
статья по математике на тему

Решение задач путем составления уравнения

Скачать:

Вложение Размер
reshenie_zadach_putem_sostavleniya_uravneniya.docx 22.96 КБ

Предварительный просмотр:

Решение задач путём составления уравнения

Современное содержание математического образования направлено главным образом на интеллектуальное развитие младших школьников, формирование культуры и самостоятельности мышления.

Данный аспект является главным в развитии личности ученика, так как мышление влияет на воспитанность человека. Достаточная подготовленность к мыслительной деятельности снимает психологические нагрузки в учении, предупреждает неуспеваемость, сохраняет здоровье.

Важнейшим фактором в развитии мыслительных операций служат педагогические системы развивающего обучения. К такой системе относится методика обучения по УДЕ.

Одна из основных целей технологии УДЕ – создание действенных и эффективных условий для развития познавательных способностей детей, их интеллекта и творческого начала, расширение математического кругозора.

В основу технологии УДЕ положен принцип: чтобы обучать ускоренно и при высоком уровне знаний, необходимо рассматривать целостные группы взаимосвязанных понятий. В триадах задач реализуется фактор дополнительности подсознательных механизмов познания.

Триада означает выполнение учеником на одном уроке:

  1. готового упражнения;
  2. обращение этого задания и самостоятельное обобщение решенной задачи;
  3. составление новой задачи и её решение.

Этот приём даёт хороший эффект в обучении, так как он побуждает учащихся осмысливать и усваивать материал на основе более высокой степени обучения.

Вопрос преемственности между начальным и средним звеньями обучения очень актуален.

В среднем звене школы ученики, например, на уроках математики обучаются решению задач путём составления уравнения, и учителя сталкиваются с недопониманием учащимися этой темы. А решать задачи путём составления уравнения можно уже в начальной школе с использованием технологии УДЕ.

Сделаем срез методики обучения решению задач путём составления уравнения.

а) Выражение с окошечками: 3 + 1 = 4 + 1 = 4

3 + 1 = 3 + = 4

б) Знакомство с понятиями «слагаемое» и «сумма»:

3 и 1 – слагаемые. Числа, которые складываются, называются слагаемыми.

4 – сумма. Число, которое получается в результате сложения, называется суммой.

в) четверка примеров:

3 + 1 = 4 4 – 1 = 3

1 + 3 = 4 4 – 3 = 1

  1. Триада задач (на нахождение суммы и неизвестного слагаемого)

на нахождение суммы

на нахождение неизвестного слагаемого

на нахождение неизвестного слагаемого

У Ромы 4 тетради в клетку, 3 тетради в линейку. Сколько всего тетрадей у Вити?

У Ромы 4 тетради в клетку, остальные в линейку. Всего 7 тетрадей. Сколько у Ромы тетрадей в клетку?

У Ромы 3 тетради в линейку, остальные в клетку. Всего у него 7 тетрадей. Сколько У Ромы тетрадей в клетку.

4, 3,

4, , 7

  1. Решение задач путём составления уравнения

Числа 5 и 3 – слагаемые.

Результат сложения – число 8.

Пусть неизвестно второе слагаемое. Обозначим неизвестное слагаемое х (икс). Мы получили равенство – уравнение.

Требуется найти число х. используем правило: чтобы найти неизвестное слагаемое, надо из суммы (8) вычесть известное слагаемое (5)

Это задача на нахождение неизвестного слагаемого.

Далее предлагается ребятам составить третью задачу из триады, но с другим неизвестным компонентом (3). Решив триаду задач, ученики рассмотрели взаимосвязь взаимно-обратных задач и научились составлять уравнения для решения задач. На таком же принципе строится знакомство с решением задач на нахождение неизвестного уменьшаемого и неизвестного вычитаемого.

Начиная с таких простейших задач, закрепляя умение выделять неизвестное в задаче и обозначать его алгебраически, умение составлять уравнение, и, решив это уравнение, найти неизвестное, можно уже без затруднения в четвертом классе (1 – 4) начальной школы решать с детьми более сложные задачи путём составления уравнения.

Две швеи шили одинаковые платья. Первая сшила 5 платьев, а вторая – 3 платья. Они израсходовали 32 м ткани. Сколько метров ткани израсходовали каждая швея в отдельности?

Источник

Как решать задачи на составление уравнений

Решение задач с помощью уравнений

В школьном курсе математики многие задачи можно решить с помощью универсального способа, который предполагает составление уравнения, то есть математической модели, построенной согласно условиям задания.

Уравнение является равенством, содержащим неизвестное, значение которого требуется вычислить.

Решить уравнение — значит определить все его корни.

Корень уравнения — число, которое можно подставить в уравнение на место неизвестного, чтобы получить в результате верное числовое равенство.

Таким образом, множество разных примеров можно решить путем составления линейного уравнения. Для этого условие задания переводят на язык арифметики. Полученное в результате уравнение или формула являются следствием такой трансформации.

Под условием задачи может пониматься реальная ситуация, объяснение определенного процесса или какое-либо событие. Получение ответа возможно при решении уравнения, то есть определении корня. Далее ответ следует проверить, чтобы исключить его противоречивость по отношению к условию.

Общий порядок, описание алгоритма

Известно, что уравнение является равенством с неизвестной величиной, обозначенной буквой, значение которой требуется вычислить. С помощью составления уравнения упрощается отработка многих задач. Перед тем как приступить к арифметическим действиям, необходимо внимательно прочитать условия задания. В результате получится определить начальные параметры и обнаружить связь между известными и неизвестными величинами.

  1. Обозначить с помощью буквы величину, которая является неизвестной по условию задачи.
  2. Составить уравнение, руководствуясь информацией из задания.
  3. Решить уравнение, то есть найти его корни.
  4. Записать ответ.

Существует несколько полезных приемов, которые пригодятся в процессе решения задачи:

  • допустимо переносить числа из одной части уравнения в другую, изменяя их знак на противоположный;
  • можно разделить или умножить обе части уравнения на одинаковое число, не равное нулю.

В качестве наглядного примера приведем решение пары задач.

Мальчик задумал какое-то число. Затем он увеличил его в 2 раза, суммировал с 8 и в результате получил 10. Нужно определить, какое число задумал мальчик.

Пусть искомое число будет равно х.

По условиям задачи х требуется умножить на 2. Получим 2х.

Затем нужно сложить результат с 8:

Согласно условию, данное выражение равно 10. Можно записать уравнение:

2x\div 2 = 2\div 2

Ответ: число, которое задумал мальчик, является 1.

Задумано число, три пятых от которого составляет 15. Нужно найти это число.

Предположим, что искомое число равно х.

В таком случае три пятых от этого числа можно записать, как:

Согласно условию задания:

Ответ: задуманное число равно 25.

Примеры решения задач для 6 класса

Кто-то однажды задал учителю вопрос: «Сколько имеешь учеников у себя в учении, ибо хочу отдать тебе в учение своего сына?». Ответ учителя был следующим: «Если придет ко мне еще столько, сколько имею, да еще половина и еще четверть и еще твой сын, то будет у меня 100 учеников». Необходимо определить количество учеников, которые обучались у учителя.

Представим, что х — это искомое количество учеников. В таком случае половина от этого количества составит 1 2 x , четверть будет равна 1 4 x . Общее количество учеников составляет 100 человек. Исходя из условий задачи, можно записать уравнение:

х + х + 1 2 x + 1 4 x + 1 = 100

После сложения всех элементов в левой части уравнения получим:

2 3 4 x + 1 = 100

Единицу можно перенести в правую часть уравнения. При этом следует изменить знак на «-»:

2 3 4 x = 100 – 1

Далее следует разделить обе части уравнения на 2 3 4 x и л и 11 4 x :

Ответ: изначально у учителя было 36 учеников.

Необходимо вычислить, какое число было задумано, если при сложении его с 10 сумма станет равна 15.

Предположим, что х является задуманным числом. К нему необходимо прибавить 10, чтобы получить 15. Исходя из данных условий, запишем уравнение, которое требуется решить:

Допустимо перенести 10 в правую часть уравнения, меняя при этом его знак:

Ответ: задуманное число — это 5.

Цена рубашки составляет 1200 рублей. Если приобрести эту вещь в выходной день, то можно получить скидку в 30%. Необходимо вычислить стоимость рубашки с учетом скидки.

Представим, что х является стоимостью рубашки за минусом предложенной продавцом скидки. В первую очередь следует определить цену рубашки со скидкой в процентном выражении:

1200 x = 100 % 70 %

После преобразования пропорция примет вид:

x = 1200 × 70 100

Ответ: рубашка с учетом скидки стоит 840 рублей.

Источник

Читайте также:  Способ описания элементов массива
Оцените статью
Разные способы