Вращение точки вокруг фронтально-проецирующей оси
При вращении вокруг фронтально-проецирующей оси точка движется по окружности, плоскость которой перпендикулярна оси вращения i (рисунок 6). Ось i перпендикулярна плоскости p 2 , следовательно, фронтальная проекция точки перемещается по окружности, а горизонтальная – по прямой, перпендикулярной горизонтальной проекции оси вращения. Это след плоскости окружности, по которой перемещается точка.
R – радиус вращения;
β – фронтальная плоскость, в которой перемещается точка;
B (B’, B”) – исходное положение точки;
Пример: Определить действительную величину отрезка способом вращения.
Для решения задачи (рисунок 7)необходимо повернуть отрезок до положения параллельного плоскости p1 или p2. Для этого задается ось вращения, перпендикулярная p2 или p1. Для упрощения решения рекомендуется ось вращения проводить через один из концов отрезка. В этом случае этот конец отрезка остается неподвижным, а вращается только второй конец отрезка.
В данном случае выбрана осьi перпендикулярная плоскости p1 и проходящая через точку B – один из концов отрезка. Точка A перемещается по окружности, которая на плоскость p1 проецируется в окружность, а на плоскость p2 – в прямую линию, перпендикулярную фронтальной проекции оси вращения i.
B’A1’ || Оx – новое положение горизонтальной проекции отрезка после поворота;
B”A1” – новое положение фронтальной проекции, которая является действительной величиной отрезка.
Пример: Определить действительную величину четырёхугольника ABCD способом вращения (рисунок 8).
Так как четырёхугольник ABCD перпендикулярен плоскости p2, выбирается ось вращения также перпендикулярная p2. Для упрощения решения ось вращения i проводим через одну из вершин четырёхугольника, например, через точку C. Новая фронтальная проекция ABCD после поворота займет положение параллельное оси Оx. Горизонтальные проекции вершин четырёхугольника строятся с помощью вертикальных и горизонтальных линий связи.
- Способ плоскопараллельного перемещения
Плоскопараллельным перемещением геометрического объекта называется такое перемещение, когда точки этого объекта перемещаются в плоскостях, каждая из которых параллельна какой-либо плоскости проекций.
При этом проекция этого объекта на плоскость параллелизма изменяет свое положение без изменения формы и размеров.
Пример: Определить действительную величину отрезка и преобразование его в проецирующий способом плоскопараллельного перемещения (рисунок 9).
В этом случае отрезок прямой АВ перемещаем так, что все его точки остаются в плоскостях, параллельных плоскости П1. При этом А ‘ 1В ‘ 1=А1В1, а фронтальные проекции траекторий точек А и В-прямые, параллельные оси X, вторым плоскопараллельным перемещением ставим отрезок в горизонтально-проецирующее положение, при этом А ‘ 2В ‘ 2=А»2В»2 , а горизонтальные проекции точек А и В-прямые, параллельные оси X.
Пример: Преобразовать плоскость общего положения в плоскость уровня способом плоскопараллельного перемещения (рисунок 10).
Выполнено последовательно два плоскопараллельных перемещения треугольника АВС: сначала относительно оси, перпендикулярной к плоскости проекций П2 , потом относительно оси, перпендикулярной к плоскости П1. При первом плоскопараллельном перемещении плоскость треугольника преобразована в горизонтально-проецирующую, при этом фронталь AD треугольника переведена в горизонтально-проецирующее положение (A’2D’2 ^X).
Другим плоскопараллельным перемещением треугольник А’В’С’ преобразован в треугольник А»В»С», при этом фронтальная проекция А»2 В»2 С»2 определяет действительный размер треугольника АВС.
- Способ прямоугольного треугольника
Действительная величина отрезка есть гипотенуза прямоугольного треугольника, у которого один катет есть горизонтальная (или фронтальная) проекция отрезка, а второй катет – разность координат концов отрезка до горизонтальной ▲z (или фронтальной ▲y) плоскости проекций (рисунок 11).
Пример: Определить действительную величину отрезка AB способом прямоугольного треугольника (рисунок 12).
Для решения задачи прямоугольный треугольник можно построить на горизонтальной или фронтальной проекции с использованием разности координат ▲z или ▲y, а также на свободном поле чертежа.
1. Какие способы преобразования комплексного чертежа вы знаете?
2. В чем сущность способа замены плоскостей проекций?
3. В чем сущность способа плоско-параллельного перемещения?
4. Зачем осуществляют преобразование комплексного чертежа?
5. Чем отличаются способы преобразования комплексного чертежа?
6. Назовите четыре исходные задачи, решаемые способом замены плоскостей проекций?
7. Как преобразовать прямую общего положения в проецирующую?
8. Как способом замены плоскостей проекций определить углы наклона плоскости общего положения к плоскостям проекций?
9. Сколько раз необходимо произвести замену плоскостей проекций для преобразования плоскости общего положения в плоскость уровня?
10. Запишите алгоритм способа замены плоскостей проекций?
Источник
Лекция 4. Способы преобразования ортогонального чертежа
4.1. Способ перемены плоскостей проекций
Чаще всего геометрические объекты расположены относительно плоскостей проекций в общем положении, и при решении задач для достижения поставленной цели необходимо выполнять много построений.
Количество построений можно значительно сократить, если геометрические элементы будут расположены в частном положении относительно плоскостей проекций.
Существуют два основных способа преобразования чертежа, при которых:
- Объект остаётся неподвижным, при этом меняется аппарат проецирования;
- Условия проецирования не меняются, но изменяется положение объекта в пространстве.
К первому способу относится способ перемены плоскостей проекций.
Ко второму – способ вращения (вращение вокруг линии уровня и вращение вокруг проецирующей прямой); способ плоскопараллельного перемещения.
Рассмотрим наиболее часто используемые способы при решении задач.
Способ перемены плоскостей проекций или способ введения дополнительных плоскостей проекций (ДПП) позволяет перейти от заданной системы плоскостей проекций к новой системе, более удобной для решения той или иной задачи.
Рассмотрим положение точки А относительно известной системы плоскостей проекций π2⊥π1 (Рисунок 4.1, а и б).
Введём π4⊥π1, при этом получим новую систему двух взаимно перпендикулярных плоскостей. Положение точки А на эпюре будет в этом случае задано проекциями А1 и А4.
Правила перемены плоскостей проекций:
- Новая плоскость проекций вводится перпендикулярно, по крайней мере, одной из заданных на чертеже плоскостей проекций;
- ДПП располагается относительно проецируемого объекта в частном положении, удобном для решения поставленной задачи;
- Новую плоскость совмещаем вращением вокруг новой оси проекций с плоскостью, которой она перпендикулярна на свободное место так, чтобы проекции не накладывались друг на друга.
а б
Рисунок 4.1 – Способ перемены плоскостей проекций
- На чертеже новая проекция геометрического элемента находится на линии связи, перпендикулярной новой оси проекций:
- Расстояние от А4 до π1/π4 равно расстоянию от А2 до π2/π1, так как величина этих отрезков (отмечены ○) определяет расстояние от точки А до плоскости проекций π1.
При решении задачи необходимо заранее обдумать, как расположить новую плоскость проекций относительно заданных геометрических объектов (прямой, плоскости и др.), и как на чертеже провести новую ось проекций, чтобы в новой системе плоскостей заданные объекты заняли бы частные положения по отношению к новой плоскости проекций.
Упражнение
1. Спроецировать отрезок общего положения АВ в точку.
- Введём ДПП π4//А1В1 и π4⊥π1 (Рисунок 4.2). В новой системе двух взаимно перпендикулярных плоскостей проекций π1/π4 отрезок АВспроецируется на π4 в натуральную величину и по этой проекции можем определить угол наклона отрезка к плоскости проекций π1
Упражнение
2. Дана плоскость общего положения – σ, заданная треугольником АВС (Рисунок 4.3).
Определить истинную величину треугольника.
- Введём ДПП π4⊥σ и π4⊥π1, для чего построим горизонталь в плоскости треугольника и проведём новую ось проекций π1/π4⊥g1согласно теореме о перпендикуляре к плоскости. На π4 плоскость σ спроецируется в прямую, что означает σ⊥πp4.
- Введём ДПП π5//σ (π4/π5//А4В4С4) и π4⊥π5. На π5 проекция А5В5С5 – есть истинная величина треугольника.
4.2. Способ вращения
Сущность способа вращения состоит в том, что положение системы плоскостей проекций считается неизменным в пространстве, а положение проецируемого объекта относительно неподвижных плоскостей изменяется.
Из сравнения сущности обоих способов видно, что решение задач, которые требуют применения преобразования ортогонального чертежа, может быть выполнено любым из этих способов, результат при этом должен получиться одинаковым. Основа выбора того или иного способа – рациональность решения.
Вращение заданных элементов будем осуществлять вокруг проецирующей прямой, то есть прямой, перпендикулярной какой-либо плоскости проекций, при этом все точки заданных элементов поворачиваются в одну и ту же сторону на один и тот же угол (Рисунок 4.4, а и б). Ось вращения и объект вращения составляют твёрдое тело.
А – точка в пространстве;
О – центр вращения точки А;
АО – радиус вращения
а б
Рисунок 4.4 – Способ вращения вокруг прямой, перпендикулярной π2
Точка описывает в пространстве окружность радиусом АО. Плоскость окружности перпендикулярна оси вращения (σ⊥m).
Так как m⊥π2 , то σ//π2, следовательно, σ⊥π1, ⇒ σ1⊥m1, и поэтому σ проецируется на π1 в виде прямой, перпендикулярной проекции оси вращения, а на π2 траектория вращающейся точки проецируется в виде окружности с центром О2≡m2.
Пусть ось вращения m⊥π1 (Рисунок 4.5, а и б). Плоскость окружности σ⊥m.
а б
Рисунок 4.5 – Вращение вокруг прямой, перпендикулярной π1
\left.\begin
Свойства проекций
- На плоскость проекций, перпендикулярную оси вращения, траектория вращающейся вокруг этой оси точки проецируется без искажения, то есть в окружность с центром, совпадающим с проекцией оси вращения на эту плоскость и радиусом, равным расстоянию от вращаемой точки до оси вращения.
- На плоскость проекций, параллельную оси вращения, траектория вращающейся точки проецируется в отрезок, перпендикулярный проекции оси вращения на эту плоскость.
- На плоскость проекций, перпендикулярную оси вращения, проекция вращаемого объекта своих размеров и формы не меняет.
Упражнение
Дано : отрезок общего положения – АВ.
Определить : способом вращения истинную величину отрезка и углы наклона его к плоскостям проекций.
1. Выберем ось вращения m⊥π1 и проходящую через точку В (Рисунок 4.6).
На плоскости проекций π2 проекция траектории перемещения точки А – прямая,
A_2 \overline
На плоскости проекций π1 проекция траектории перемещения точки А – окружность радиусом |А1В1|.
Повернем отрезок до положения, параллельного плоскости проекций π2. Получим натуральную величину отрезка.
Угол наклона отрезка АВ к плоскости проекций π1 будет угол
\alpha=\angle\widehat
Для того, чтобы определить угол наклона АВ к плоскости проекций π2, надо ввести новую ось вращения перпендикулярно π2 и повторить построения.
4.3. Определение истинной величины треугольника способом вращения
Пусть плоскость σ задана треугольником. Необходимо определить истинную величину треугольника (Рисунок 4.7).
Одним поворотом вокруг оси, перпендикулярной к плоскости проекций, истинную форму треугольника получить нельзя (так же как и введением одной ДПП).
Вращая вокруг оси m, перпендикулярной π1 можно расположить плоскость ΔАВС⊥π2 (а вращая вокруг оси n⊥π2 можно расположить плоскость ΔАВС⊥π1).
Рисунок 4.7
- Положим σ’ должна быть перпендикулярна π2. Для чего построим CD – горизонталь h плоскости σ. Введём первую ось вращения m⊥π1, например, через точку С.
- Повернём треугольник вокруг m до положения, когда
\overline\perp\pi_2\Rightarrow\overline _1\overline _1\perp\pi_2/\pi_1
На основании 3-го свойства, новая горизонтальная проекция треугольника \overlineпо величине должна равняться A1B1C1, а фронтальная проекция треугольника будет представлять отрезок. - Введём вторую ось вращения n⊥π2 через точку \overline_2 . Повернём фронтальную проекцию \overline
в новое положение \overline<\overline \overline \overline >\parallel\pi_2/\pi_1 . На π1 получим треугольник \overline<\overline \overline \overline > , равный истинной величине треугольника АВС.
4.4. Задачи для самостоятельной работы
Двумя способами преобразования ортогонального чертежа:
1. Определить расстояние от точки D до отрезка АВ – общего положения (Рисунок 4.8).
Рисунок 4.8
2. Определить расстояние между двумя параллельными прямыми общего положения (АВ//CD) (Рисунок 4.9).
Рисунок 4.9
3. Определить расстояние между двумя скрещивающимися прямыми, заданными отрезками АВ и CD (Рисунок 4.10).
Рисунок 4.10
4. Построить недостающую проекцию точки D при условии, что задана σ=ΔАВС – общего положения и первая проекция точки D1, Dотстоит от плоскости σ на 30 мм (Рисунок 4.11).
Рисунок 4.11
5. Дан отрезок АВ – общего положения. Ось вращения не проходит через АВ (Рисунок 4.12). Определить способом вращения истинную величину АВ.
Рисунок 4.12
6. Задана прямая общего положения m и точка А вне прямой. Построить плоскость, проходящую через точку А и перпендикулярную прямой m (Рисунок 4.13).
Рисунок 4.13
Источник