Как найти натуральную величину способом вращения

Определение натуральной величины способом вращения

Способ вращения позволяет переориентировать плоскую фигуру или отрезок прямой линии так, чтобы фигура была уложена в плоскость параллельную плоскости проекции для выполнения условия проецирования фигуры в натуральную величину.

Вращение прямой

В примере, горизонтально проецирующая ось вращения проходит через точку A. Для вращения можно выбирать любую ось, в т.ч. и не пересекающую заданную прямую. При выборе фронтально проецирующей оси вращения, вместо угла наклона к горизонтальной плоскости проекции, будет определен угол между прямой и фронтальной плоскостью.

При вращении вокруг вертикальной оси, горизонтальные проекции траектории движения точек прямой определены окружностями. Эти же окружности на фронтальной проекции определены горизонтальными прямыми, которые показывают сохранение высоты точек вращающихся вокруг вертикальной оси. Вращение выполняется до положения заданной прямой параллельно фронтальной плоскости проекций. В результате, фронтальная проекция прямой определяет натуральную величину отрезка заданной прямой линии |A
2 B 0
2 |=|AB| .

Вращение треугольника

Вращение вокруг проецирующей оси является частным случаем плоскопараллельного перемещения. С другой стороны, для любых двух положений равных фигур можно определить центр вращения и вращение вокруг этого центра будет переводить фигуру из одного положения в другое. В примере чертежа треугольника выполнено два вращения: (1) вокруг фронтально проецирующей оси i и (2) вокруг горизонтально проецирующей оси j. Первое вращение переводит плоскость △ABC в горизонтально проецирующее положение и определяет угол β наклона треугольника к фронтальной плоскости проекции. Второе вращение выполнено вокруг горизонтально проецирующей оси j до положения плоскости треугольника параллельно фронтальной проеции. A 2
2 B 2
2 C 2
2 =ABC — проекция определяет натуральную величину.

Источник

Как найти натуральную величину способом вращения

§ 23. Способы определения натуральной величины отрезка прямой линии и плоской фигуры

Элементы деталей, наклонные к плоскостям проекций, проецируются на них с искажением размеров. Однако в некоторых случаях требуется получить на чертеже натуральную величину отрезков прямых линий или плоских фигур, в частности при построении разверток.

Натуральные размеры отрезков линий и фигур получаются на той плоскости проекций, параллельно которой они расположены. Следовательно, чтобы определить натуральную величину отрезка линии или фигуры, необходимо, чтобы плоскость проекции была параллельна изображаемому элементу. Для этого применяют способ вращения и способ перемены плоскостей проекций.

Способ вращения. Способ вращения заключается в том, что отрезок прямой линии или плоскую фигуру вращают вокруг выбранной оси до положения, параллельного плоскости проекций.

На рис. 173 показано, как определить способом вращения натуральную длину отрезка АВ прямой, наклонной к плоскостям проекций. На наглядном изображении (рис. 173, а) видно, что отрезок А В прямой не параллелен плоскостям проекций и, следовательно, проекции а’b’ и ab отрезка изображаются искаженными. Нужно повернуть отрезок вокруг оси Аа, перпендикулярной к плоскости H, в направлении, указанном стрелкой, до положения, при котором отрезок станет параллельным плоскости V, т. е. в положение, обозначенное АВ1. Тогда горизонтальная проекция аb отрезка АВ расположится параллельно плоскости V (параллельно оси х); обозначим ее аb1. В этом положении проекция отрезка на плоскость V — линия а’b’ представляет собой натуральную величину отрезка АВ.

Построение на чертеже начинают с горизонтальной проекции (рис. 173, б). Из точки а, как из центра, радиусом, равным ab, описывают дугу окружности bb1 до пересечения с прямой, проведенной из точки а параллельно оси х. Получают новую горизонтальную проекцию b1 точки В. Фронтальную проекцию b`1 точки b1 получают, восставив из нее перпендикуляр к оси х. Соединив прямой точку а’ с точкой b` получают натуральную длину отрезка АВ.

Читайте также:  Способы распространения комп вирусов

На рис. 173, в показано, как можно данное построение применить к определению натуральной длины наклонного ребра треугольной пирамиды.


Рис. 173. Определение натуральной длины отрезка прямой способом вращения

Способ перемены плоскостей проекций. Этот способ отличается от способа вращения тем, что проецируемая линия или фигура остается неподвижной, а одну из плоскостей проекций заменяют новой дополнительной плоскостью, на которую и проецируют изображаемый элемент.

В пересечении новой плоскости Н1 с плоскостью V (рис. 174, а) получают новую ось проекций х1. Новую систему плоскостей на чертеже обозначают H1/V

Дополнительную плоскость проекций Н1 выбирают так, чтобы она была перпендикулярна фронтальной плоскости проекций V (рис. 174, а) и параллельна линии или плоскости фигуры, натуральную величину которой нужно определить. Линия или фигура спроецируется на дополнительную плоскость без искажений; новая ось проекций хх будет параллельна фронтальной проекции наклонной грани (рис. 174, б).

Рассматривая рис. 174, а и б, можно установить, что при перемене горизонтальной плоскости Н на новую Н1 расстояние новой горизонтальной проекции любой точки до оси проекций х 1 будет равно расстоянию прежней горизонтальной проекции этой точки до прежней оси проекций, т. е. расстояние точки А от плоскости V остается неизменным. Этим и пользуются при построении проекций фигур на дополнительную плоскость, которую затем совмещают с плоскостью чертежа.

На рис. 174, а точка А спроецирована сначала на плоскости V и H, т. е. получены ее проекции а’ и а. Затем взята дополнительная плоскость H1 перпендикулярная к плоскости V, и точка А спроецирована на дополнительную плоскость. Для этого из фронтальной проекции a` до точки А опущен перпендикуляр на плоскость H1 пересечение которого с плоскостью дало точку ах1. Затем от точки аx1 отложено расстояние, равное аах, и получена искомая проекция a1 точки А на дополнительную плоскость. Наклонная линия x1 на чертеже обозначает новую ось проекций. Важно отметить, что фронтальная и новая проекции точки А лежат на одном перпендикуляре к оси х1.

На рис. 174, б дано наглядное изображение четырехугольной призмы, верхняя грань которой наклонна. Чтобы определить натуральную величину верхней наклонной грани призмы, ее необходимо спроецировать на дополнительную плоскость. Построение проводят в следующем порядке. Вычерчивают фронтальную и горизонтальную проекции призмы. На произвольном расстоянии проводят новую ось проекции х1 параллельно фронтальной проекции изображаемой грани. Из фронтальных проекций вершин наклонной грани — точек а`, b`, с`, d’ восставляют перпендикуляры к новой оси x1. На перпендикулярах от новой оси х1 откладывают отрезки, равные расстояниям горизонтальных проекций этих точек от оси х. Соединив полученные точки а1, b1, с1, d1 прямыми линиями, получают натуральную величину грани.


Рис. 174. Определение натуральной величины фигуры способом перемены плоскостей проекций

Изображение детали на дополнительной плоскости называют дополнительным видом, который отмечают на чертежах надписью типа «Вид А», «Вид Б», подчеркнутой тонкой линией. У связанного с дополнительным видом изображения наносят стрелку, указывающую направление взгляда, с соответствующим буквенным обозначением (рис. 175, a), при этом выбирают одну из прописных букв русского алфавита. Дополнительный вид допускается повертывать, но, как правило, с сохранением положения, принятого для данного предмета на главном изображении, при этом к надписи «Вид Б» должно быть добавлено слово «повернуто», располагаемое в строчку с надписью (рис. 175, б). Когда дополнительный вид расположен в непосредственной проекционной связи с соответствующим изображением, стрелку и надпись над видом не наносят (рис. 175, в).

Читайте также:  Способы получения изделий обработкой давлением


Рис. 175. Расположение и обозначение дополнительных видов

Ответьте на вопросы

1. Как обозначают на чертежах дополнительные виды?

2. Чем отличается способ вращения от способа перемены плоскостей проекции? Для чего эти способы применяются?

Источник

Определение натуральной величины отрезка

Если отрезок параллелен плоскости, то он проецируется на неё без искажений. В остальных случаях для нахождения его натуральной величины применяют метод прямоугольного треугольника или способы преобразования ортогональных проекций.

Метод прямоугольного треугольника

Сущность данного метода заключается в нахождении гипотенузы прямоугольного треугольника, у которого один катет равен горизонтальной (или фронтальной) проекции отрезка, а величина другого катета представляет собой разность удаления концов отрезка от горизонтальной (или, соответственно, фронтальной) плоскости проекции.

Для того чтобы найти натуральную величину отрезка AB (рисунок выше), строим прямоугольный треугольник A0A’B’. Его первый катет A’B’ – это горизонтальная проекция AB. Второй катет A’A0 равен величине ZA – ZB, то есть разности удаления точек A и B от горизонтальной плоскости П1.

Откладываем A’A0 = ZA – ZB перпендикулярно A’B’. Затем проводим гипотенузу A0B’ треугольника A0A’B’. На рисунке она обозначена красным цветом. Её величина соответствует настоящей длине AB.

Способ параллельного переноса

Параллельный перенос представляет собой перемещение геометрической фигуры параллельно одной из плоскостей проекций. При этом величина проекции фигуры на эту плоскость не меняется. Например, если перемещать отрезок EF параллельно горизонтальной плоскости П1, то длина его проекции E’F’ не изменится, когда она займет новое положение E’1F’1 (как это показано на рисунке ниже).

Еще одно важное свойство параллельного переноса заключается в том, что при любом перемещении точки параллельно горизонтальной плоскости проекции, её фронтальная проекция движется по прямой, параллельной оси X. Если точка перемещается параллельно фронтальной плоскости, то её горизонтальная проекция движется по прямой, параллельной оси X.

Чтобы определить действительный размер отрезка EF, на свободном месте чертежа строим его новую горизонтальную проекцию E’1F’1 = E’F’ так, чтобы она была параллельна оси X . Затем по линиям связи находим точки E»1 и F»1. Расстояние между ними и есть искомая величина, поскольку мы перенесли EF в положение, параллельное фронтальной плоскости.

Метод параллельного переноса, описанный здесь, иногда называют параллельным перемещением. Посмотреть дополнительные примеры и получить более подробную информацию по данной теме можно в этой статье.

Поворот вокруг оси

Для того, чтобы отрезок стал параллелен плоскости проекции и без искажения отразился на ней, он может быть повернут вокруг проецирующей прямой, проходящей через один из его концов.

Определим длину произвольного отрезка MN. Для этого через точку N проводим горизонтально проецирующую прямую i. Вокруг неё поворачиваем MN так, чтобы его проекция M’N’ заняла положение M’1N’1, параллельное оси X.

По линиям связи находим точку M»1. При этом исходим из того, что M» в процессе вращения движется параллельно горизонтальной плоскости.

Точка N не изменит своего положения, так как лежит на оси поворота. Поэтому осталось только соединить N»1 и M»1 искомым отрезком. На рисунке он выделен красным цветом.

Более подробную информацию о решении задач методом поворота вокруг оси вы можете получить, ознакомившись со следующим материалом.

Читайте также:  Графоаналитический способ теоретическая механика

Источник

Определение натуральной величины отрезка прямой методом вращения

Сущность определение натуральной величины отрезка прямой методом вращения состоит в том, что сохраняя основную систему плоскостей проекций П1 – П2 неизменной, проецируемому отрезку придают путем вращения вокруг оси перпендикулярной плоскости проекций такое положение, при котором на комплексном чертеже будет получена его натуральная величина.

Для определения натуральной величины отрезка прямой общего положения АS, выберем ось вращения перпендикулярную горизонтальной плоскости проекций и проходящую через А1 (рис. 3.13 а). Повернем отрезок так, чтобы он стал параллелен фронтальной плоскости проекций (горизонтальная проекция отрезка параллельна оси x). При этом точка S1 переместиться в S1 , а точка А1 не изменит своего положения. Положение точки S2 находится на пересечении фронтальной проекции траектории перемещения точки S (прямая линия параллельная оси x) и линии связи проведенной из S1 . Полученная проекция S2 ‘ А2 определяет действительные размеры самого отрезка.

При вращении отрезка вокруг оси, перпендикулярной П2, фронтальная проекция доводится до положения, параллельного оси ОХ, а новая горизонтальная проекция даст длину отрезка (рис. 3.13 б).

а б

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Определение натуральной величины угла

Чтобы определить натуральную величину угла, нужно перевести его в положение, в котором его стороны будут параллельны плоскости проекции. Наиболее рациональный путь решения данной задачи – использовать способ вращения вокруг линии уровня. Более трудоемкими вариантами являются метод замены плоскостей проекций и параллельное перемещение.

Приведенный ниже пример иллюстрирует нахождение угла между пересекающимися прямыми m и n способом вращения вокруг фронтали.

  1. В произвольном месте чертежа проводим фронталь f. Она пересекает прямые m и n в точках 1 и 2. Определяем их недостающие проекции.
  2. Через точку K» проводим перпендикуляр к f». На пересечении этого перпендикуляра с фронталью находится проекция центра вращения O». По линии связи определяем положение т. O’.
  3. Находим величину радиуса R поворота точки K. Для этого перпендикулярно O»K» откладываем отрезок K»K0 = yk – yo. Таким образом, R равен O»K0 – гипотенузе прямоугольного треугольника O»K»K0.
  4. Проводим дугу радиусом R до её пересечения с перпендикуляром O»K» в точке K»1. Соединяем K»1 c точками 1» и 2». Натуральная величина угла между прямыми m и n равна углу ϕ при вершине K»1.

Более подробную информацию о методе вращения вокруг линии уровня, который мы здесь использовали, вы можете найти на следующей странице.

Определение угла между скрещивающимися прямыми

Углом между скрещивающимися прямыми называют плоский угол, стороны которого параллельны данным прямым. На изображении, приведенном ниже, прямые e и d скрещивающиеся и друг с другом не пересекаются. Чтобы найти угол между ними, выполним ряд графических построений:

  • На любом свободном месте чертежа отмечаем точку S. Располагаем её произвольно (проекции S» и S’ показаны на рисунке).
  • Через точку S проводим прямые a и b так, чтобы они были параллельны e и d. В нашем случае a||e, b||d соответственно.
  • Строим горизонталь h, которая будет играть роль оси вращения. Перпендикулярно h’ из точки S’ проводим прямую. Она пересекает h’ в т. O’ – горизонтальной проекции центра вращения.
  • Определяем радиус поворота R как гипотенузу треугольника O’S’S0. При этом катет S’S0 равен разности удаления точек S» и O» от горизонтальной плоскости.
  • Находим т. S’1 на пересечении дуги радиуса R с прямой S’O’. Соединяем S’1 c точками 1′ и 2′, которые своего положения не меняют. Угол ϕ при вершине S’1 искомый. Задача решена.

Источник

Оцените статью
Разные способы