Форум химиков
Разогрев воды с помощью химии и чтоб не вредно для человека
Разогрев воды с помощью химии и чтоб не вредно для человека
Сообщение Бщгус » Вс сен 02, 2007 9:12 pm
Сообщение MONSTA » Вс сен 02, 2007 9:26 pm
Сообщение amik » Вс сен 02, 2007 10:07 pm
Сообщение nitro » Пн сен 03, 2007 5:45 am
Сообщение Tulippa » Пн сен 03, 2007 9:12 am
Сообщение nitro » Вт сен 04, 2007 5:59 am
Re: Разогрев воды с помощью химии и чтоб не вредно для челов
Сообщение cynnamoyl » Вт сен 04, 2007 10:20 am
Сообщение Myrsten » Вт сен 04, 2007 11:13 am
Японцы нечто подобное уже сделали. Слышал, что там напитки пробовали выпускать в ж/б с двойным дном. Напиток сверху, охлаждающая смесь (нитрат аммония + вода ) в раздельных отсеках снизу. Может быть и о разогреве (для сакэ например ) тоже подумали.
Сообщение Бщгус » Вт сен 04, 2007 8:47 pm
Сообщение S324 » Вт сен 04, 2007 10:00 pm
Сообщение Константин_Б » Ср сен 05, 2007 8:36 am
Источник
Как нагреть воду химическим способом
Евросамоделки — только самые лучшие самоделки рунета! Как сделать самому, мастер-классы, фото, чертежи, инструкции, книги, видео.
При изготовлении большого числа фигурных деталей часто приходится заниматься нудной работой по перенастройке фрезерной головки. Приобрести для таких работ специальный станок? Эту роскошь может позволить себе не каждый.
Но есть возможность спроектировать и построить его самому. Причем, если фрезу с приводом сделать подвижными, а стол станка — наклонным, то для изготовления различных профилей можно обходиться минимальным числом сменных фрез.
Сверхэкономичный нагреватель воды своими руками
Цены на электроэнергию составляют не малую часть семейного бюджета особенно если требуется часто греть воду в больших количествах от сети. Общий вид устройства на фото.
Представленная ниже схема нагревателя воды позволяет существенно сократить расходы электроэнергии. Посудите сами при потреблении всего 150 ватт от сети устройство греет воду так же как обогреватель мощностью 1,5 — 2 киловатта! Секрет такой эффективности кроется в использовании реактивного тока.
Изготовить такой супер эффективный водонагреватель под силу любому домашнему мастеру. Вам потребуются один рабочий ЛАТР + сердечник от ЛАТРа , моток медного провода и медная трубка. Обратите внимание что перемычка сделана из отрезка резинового шланга! Медную трубку тщательно изолируйте от сердечника. Вода нагревается почти мгновенно.
Есть умельцы которые подключили такой нагреватель к системе отопления дома (тёплые полы) или к батареям отопления.
Источник
Нетрадиционный нагрев воды
Сегодня у нас канун Нового Года, поэтому просто порадуемся. И, поскольку сейчас зима, то неплохо было бы чуточку согреться. Поэтому сегодняшняя статья – нетрадиционный нагрев воды в условиях зимы и прочего отсутствия электроэнергии. Лайф хакинг, так сказать.
Нетрадиционный нагрев воды необходим тогда, когда горячая вода нужна, но отсутствуют или ёмкости для воды, или обычные источники энергии – или хочется чего-то оригинального. Обычно на Новый Год хочется оригинального, так что немного рукоделия, и юмора, надеемся, будет в тему.
Итак, переходим к интересным вариантам нетрадиционного нагрева воды (осторожно, в конце 18+).
Начнём с теории. Так, все знают, что огонь можно добыть с помощью трения. Это связано с тем, что трение всё больше ускоряет движение молекул воды. Следовательно, если молекулы воды заставить двигаться быстрее тем или иным способом, её температура повысится. Поэтому первый нетрадиционный рецепт нагрева воды:
- Допустим, вам холодно.
- Возьмите поллитровую банку воды.
- Оберните поролоном (теплоизоляция здесь – важный момент).
- В крышке проделайте небольшое отверстие
- Поместите туда венчик для взбивания (ручной или от миксера).
- Утеплите крышку.
- Оберните конструкцию фольгой (можно фольгированным скотчем).
- Если у вас миксер, то начинайте взбивать воду.
- Если у вас венчик ручной, то начинайте взбивать воду.
- Спустя некоторое время вода нагреется.
- Да и вы согреетесь.
Вот такой вот оригинальный вариант. Гарантируем: так оно и будет 🙂
Далее, скажем, вам нужно 1 литр воды температурой 50 градусов. Но тереть такой объём воды вы не хотите. Что делать? Очень просто, пригодятся знания по химии. Инструкция проста:
- Пойдите в аптеку.
- Купите 20 баночек спирта 90 % (на литр воды).
- Оберните двухлитровую банку поролоном и фольгой (изоляция).
- Налейте в банку воду.
- Налейте в банку спирт.
По законам химии вода будет нагреваться. Если температура воды недостаточна, подлейте к смеси грам 200 концентрированной серной кислоты. Нагрев пойдёт интенсивнее.
Оба варианта расчитан на небольшой объём воды. Что делать, если воды нужно нагреть больше? Например, вот что:
То есть, свечки, подставки, ёмкость. Нагрев пойдёт быстрее, а расход свечей уменьшится, если изолировать кастрюлю (хотя бы скотчем фольгированным обмотать).
Но что делать, если нет свечей, а нужно ещё больше горячей воды? Вот как с этим элементарно справляются многие и многие:
Единственное но, необходимо организовать хорошее перемешивание воды, иначе температура будет неравномерной.
А вот улучшенный, более горячий вариант с организованным размешиванием:
Обратите внимание: наличие девушек без одежды поднимает температуру гораздо быстрее, чем любой другой вариант 🙂
Источник
Электродный нагрев жидких сред
Электродный способ нагрева применяют для нагрева проводников II рода : воды, молока, фруктовых и ягодных соков, почвы, бетона и т.д. Электродный нагрев широко распространен в электродных водонагревателях, водогрейных и паровых котлах, а также в процессах пастеризации и стерилизации жидких и влажных сред, тепловой обработки кормов.
Материал помещают между электродами и нагревают электрическим током, протекающим по материалу от одного электрода к другому. Электродный нагрев считается прямым нагревом — здесь материал служит средой, в которой электрическая энергия преобразуется в тепловую.
Электродный нагрев — наиболее простой и экономичный способ нагрева материалов, не требует специальных источников питания или нагревателей из дорогостоящих сплавов.
Электроды подводят ток к нагреваемой среде и сами током практически не нагреваются. Электроды изготавливают из недифицитных материалов, чаще всего из металлов, но и могут быть и неметаллическими (графитовыми, угольными), Во избежание электролиза для электродного нагрева используют только переменный ток.
Проводимость влажных материалов обуславливается содержанием воды, поэтому в дальнейшем электродный нагрев будем рассматривать, главным образом, к нагреву воды, но приводимые зависимости применимы и к нагреву других влажных сред.
Нагрев в электролите
В машиностроении и ремонтном производстве применяют нагрев в электролите . Металлическое изделие (деталь) помещают в электролитическую ванну (5 — 10 %-ный раствор Na 2 CO 3 и др.) и подсоединяют к отрицательному полюсу источника постоянного тока. В результате электролиза на катоде выделяется водород, а на аноде — кислород. Слой пузырьков водорода, покрывающий деталь, представляет для тока высокое сопротивление. В нем выделяется основная доля теплоты, нагревающая деталь. На аноде , имеющем гораздо большую поверхность, плотность тока мала. При определенных условиях деталь нагревается электрическими разрядами, возникающими в водородном слое. Газовый слой одновременно служит теплоизоляцией, предотвращающей охлаждение детали электролитом.
Преимущество нагрева в электролите — значительная плотность энергии (до 1 кВт / см2), обеспечивающая высокую скорость нагрева. Однако это достигается повышенным расходом энергии.
Электрическое сопротивление проводников II рода
Проводники II рода называют электролитами . К ним относятся водные растворы кислот, щелочей, солей, а также различные жидкие и влагосодержащие материалы (молоко, влажные корма, почва).
Дистиллированная вода имеет удельное электрическое сопротивление порядка 10 4 ом х м и практически не проводит электрический ток, а химически чистая вода является хорошим диэлектриком. «Обычная» вода содержит в растворенном виде соли и другие химические соединения, молекулы которых диссоциируют в воде на ионы, сообщая ей ионную (электролитическую проводимость). Удельное электрическое сопротивление воды зависит от концентрации солей и приближенно может быть определено по эмпирической формуле
p 20 = 8 х 10 / С,
где p 20 — удельное сопротивление воды при 20 0 С, Ом х м, С — суммарная концентрация солей, мг/г
Атмосферная вода содержит растворенных солей не более 50 мг/л, воды рек — 500 — 600 мг/л, подземные воды — от 100 мг/л до нескольких граммов на литр. Наиболее часто встречающиеся значения у дельного электрического сопротивления p 20 для воды находятся в диапазоне 10 — 30 Ом х м.
Электрическое сопротивление проводников II рода существенно зависит от температуры. С ее возрастанием увеличивается степень диссоциации молекул солей на ионы и их подвижность, вследствие чего проводимость повышается, а сопротивление снижается. Для любой температуры t до начала заметного парообразования удельная электрическая проводимость воды, Ом х м -1 , определяется линейной зависимостью
yt = y20 [1 + a (t-20)] ,
где y20 — удельная проводимость воды при температуре 20 o C , а — температурный коэффициент проводимости, равный 0,025 — 0,035 o C -1 .
В технических расчетах обычно пользуются не проводимостью, а удельным сопротивлением
pt = 1/ yt = p20 / [1 + a (t-20)] (1)
и его упрощенной зависимостью p (t) , принимая a = 0,025 o C -1 .
Тогда удельное сопротивление воды определяют по формуле
pt = 40 p20 / (t +20)
В диапазоне температур 20 — 100 о С удельное сопротивление воды возрастает в 3 — 5 раз, во столько же раз изменяется мощность, потребляемая из сети. Это один из существенных недостатков электродного нагрева, приводящий к завышению сечения питающих проводов и усложняющий расчет установок электродного нагрева.
Удельное сопротивление воды подчиняется зависимости (1) только до наступления заметного парообразования, интенсивность которого зависит от давления и плотности тока в электродах. Пар не является проводником тока, и поэтому при парообразовании удельное сопротивление воды возрастает. В расчетах это учитывается коэффициентом b , зависящим от давления и плотности тока:
pc м = p в b = p в a e k J
где pc м — удельное сопротивление смеси вода — пар, p в — удельное сопротивление воды без заметного парообразования, a — постоянная, равная для воды 0,925, k — величина, зависящая от давления в котле (можно принять k = 1 , 5 ), J — плотность тока на электродах, А/см2.
При нормальном давлении влияние парообразования сказывается при температуре выше 75 о С. Для паровых котлов коэффициент b достигает значения 1,5.
Электродные системы и их параметры
Электродная система — совокупность электродов, определенным образом связанных между собой и питающей сетью, предназначенных для подвода тока к нагреваемой среде.
Параметрами электродных систем являются : число фаз, форма, размеры, число и материал электродов, расстояние между ним, электрическая схема соединения («звезда», «треугольник», смешанное соединение и т. п.).
При расчете электродных систем определяют их геометрические параметры, обеспечивающие выделение в нагреваемой среде заданной мощности и исключающих возможность ненормальных режимов.
Мощность трехфазной электродной системы при соединении звездой:
P = U2 л / R ф = 3 U ф / R ф
Мощность трехфазной электродной системы при соединении треугольником:
При заданном напряжении U л питания мощность электродной системы P определяется сопротивлением фазы R ф, которое представляет собой сопротивление тела нагрева, заключенного между электродами, образующими фазу. Конфигурация и размеры тела зависят от формы, размеров и расстояния между электродами. Для простейшей электродной системы с плоскими электродами шириной каждого b , высотой h и расстоянием между ними:
R ф = pl / S = pl / (bh)
где, l , b , h — геометрические параметры плоскопараллельной системы.
Для сложных систем зависимость R ф от геометрических параметров не представляется выразить столь просто. В общем случае ее можно представить в виде R ф = с х ρ , где с — коэффициент, определяемый геометрическими параметрами электродной системы (его можно определить по справочникам).
Размеры электродов, обеспечивающие необходимое значение R ф, могут быть рассчитаны, если известно аналитического описание электрического поля между электродами, а также зависимость p от определяющих ее факторов (температура, давление и др.).
Геометрический коэффициент электродной системы находят как k = R ф h / ρ
Мощность любой трехфазной электродной системы можно представить в виде P = 3U 2 h /( ρ k)
Кроме этого, важно обеспечить надежность электродной системы, исключение порчи продукта и электрического пробоя между электродами. Эти условия выполняются ограничением напряженности поля в межэлектродном пространстве, плотности тока на электродах и правильным выбором материала электродов.
Допустимую напряженность электрического поля в межэлектродном пространстве ограничивают требованием недопущения электрического пробоя между электродами и нарушения работы установок. Допустимую напряженность E доп поля выбирают по электрической прочности Епр поля выбирают по электрической прочности Епр материала с учетом коэффициента запаса: Едоп = Епр / (1,5 . 2)
Величина Едоп определяет расстояние между электродами:
l = U / Едоп = U / (J доп ρ т),
где J доп — допустимая плотность тока на электродах, ρ т — удельное сопротивление воды при рабочей температуре.
По опыту проектирования и эксплуатации электродных водонагревателей значение Едоп принимают в пределах (125 . 250) х 102 Вт/м, минимальное значение соответствует удельному сопротивлению воды при температуре 20 о С менее 20 Ом х м, максимальное — удельному сопротивлению воды при температуре 20 о С более 100 Ом х м.
Допустимую плотность тока ограничивают из-за возможности загрязнения нагреваемой среды вредными продуктами электролиза на электродах и разложения воды на водород и кислород, которые в смеси образуют гремучий газ.
Допустимую плотность тока определяют по формуле:
J доп = Едоп / ρ т,
где ρ т — удельное сопротивление воды при конечной температуре.
Максимальная плотность тока:
Jmax = k н I т / S ,
где, k н = 1,1 . 1,4 — коэффициент, учитывающий неравномерность плотности тока по поверхности электрода, I т — сила рабочего тока, стекающего с электрода при конечной температуре, S — площадь активной поверхности электрода.
Во всех случаях должно быть соблюдено условие:
Материалы для электродов должны быть электрохимически нейтральны (инертны) относительно нагреваемой среды. Недопустимо выполнять электроды из алюминия или оцинкованной стали. Лучшими материалами для электродов служат титан, нержавеющие стали, электротехнический графит, графитизированные стали. При нагреве воды для технологических нужд используют обычную (черную) углеродистую сталь. Для питья такая вода непригодна.
Регулирование мощности электродной системы возможно при изменении значений U и R . Чаще всего при регулировании мощности электродных систем прибегают к изменению рабочей высоты электродов (площади активной поверхности электродов) путем введения между электродами диэлектрических экранов или изменением геометрического коэффициент электродной системы (определяется по справочникам в зависимости от схем электродных систем).
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Источник