Как можно снизить закалочные напряжения укажите способы закалки понижающие закалочные напряжения

Способы закалки

Охлаждение при закалке должно обеспечить получение структуры мартенсита в пределах заданного сечения детали при отсутствии образования трещин и деформаций.

Идеальным охлаждением считается такое, при котором обеспечивается высокая скорость охлаждения при температурах наименьшей устойчивости переохлажденного аустенита для предупреждения его диффузионного превращения и медленное охлаждение в интервале мартенситного превращения с целью уменьшения закалочных напряжений (рис. 15).

1 – закалка в воде; 2 – ступенчатая закалка;3 – идеальное

охлаждение; 4 – закалка в масле;5 – изотермическая закалка;

Vкрит.— критическая скорость закалки

Рисунок 15 – Кривые охлаждения, соответствующие различным видам закалки

Напряжения при закалке стали возникают в результате неравномерного охлаждения поверхности и центральных зон детали, а также из-за увеличения объема при мартенситном превращении и неодновременности протекания его по сечению детали. В первом случае напряжения классифицируются как тепловые, а во втором – как структурные.

В начале охлаждения поверхностные слои вследствие уменьшения объема сжимаются, чему противодействуют еще неохлажденные внутренние слои. Это вызывает образование в поверхностных слоях напряжений растяжения, а во внутренних – напряжений сжатия. По мере дальнейшего охлаждения напряжения начнут уменьшаться, и в некоторый момент произойдет смена знака напряжений на поверхности и в центре. После окончательного охлаждения на поверхности образуются остаточные напряжения сжатия, а в сердцевине – напряжения растяжения. Появление остаточных напряжений является результатом того, что напряжения вызывают не только упругую, но и неодновременную и неодинаковую пластическую деформацию слоев по сечению детали.

Структурные напряжения образуются по обратной схеме. В начале охлаждения в результате мартенситного превращения поверхностные слои расширяются, чему противодействуют внутренние слои, еще не испытавшие структурных преобразований. Это приводит к образованию на поверхности сжимающих напряжений, а в центре – растягивающих. По мере дальнейшего охлаждения знак напряжений на поверхности и в центральных зонах изменяется, и после окончательного остывания на поверхности будут остаточные напряжения растяжения, а в сердцевине – напряжения сжатия.

При закалке одновременно возникают как тепловые, так и структурные напряжения и в зависимости от их соотношения могут образовываться различные эпюры суммарных напряжений. Наиболее опасными являются растягивающие напряжения на поверхности, которые способствуют образованию трещин и снижают сопротивление усталостному разрушению стали.

Растягивающие напряжения возникают, в основном, за счет появления структурных напряжений, величина которых тем больше, чем выше температура закалки и интенсивнее охлаждение в интервале мартенситного превращения Мн…Мк,. Для уменьшения структурных напряжений необходимо снижать скорость охлаждения ниже температуры начала мартенситного превращения.

В качестве закалочных сред для углеродистых сталей, имеющих высокую критическую скорость закалки, применяются вода и различные водные растворы, а для легированных сталей, имеющих небольшую критическую скорость охлаждения, — масло, водовоздушные смеси и т. п.

Вода, как закалочная среда, имеет большую скорость охлаждения в перлитном интервале, но при этом и высокую скорость охлаждения при температурах образования мартенсита, что может приводить к образованию трещин и деформации закаливаемых изделий (рис.15). Кроме этого, охлаждающая способность воды резко снижается при повышении её температуры.

При закалке в масле охлаждение в мартенситном интервале осуществляется с невысокой скоростью, но в интервале перлитного превращения интенсивность охлаждения часто оказывается недостаточной для его подавления (рис. 15).

Таким образом, в настоящее время нет закалочной среды, которая бы обеспечивала идеальное охлаждение, и поэтому разработаны различные способы закалки, использование которых позволяет снизить уровень возникающих напряжений при обеспечении необходимого структурообразования.

Наиболее распространенным способом закалки является закалка в одном охладителе, при котором деталь погружают в закалочную среду, где она остается до полного охлаждения. С целью уменьшения внутренних напряжений детали перед погружением в закалочную жидкость некоторое время охлаждают на воздухе. Такой способ называется закалкой с подстуживанием. При этом необходимо, чтобы температура детали не опускалась ниже Аr3 для доэвтектоидных сталей и ниже Аr1 – для заэвтектоидных.

Читайте также:  Способы защиты растений от грибов паразитов

При закалке в двух средах деталь сначала охлаждают в воде до температуры несколько выше Мн, а затем для окончательного охлаждения переносят в среду с меньшей охлаждающей способностью, при этом уменьшаются внутренние напряжения, связанные с превращением аустенита в мартенсит.

При ступенчатой закалке деталь после нагрева охлаждается в закалочной среде, имеющей температуру несколько выше точки Мн, и выдерживается в ней до выравнивания температуры по всему сечению, но при этом не должно произойти превращение аустенита в бейнит. После этого следует окончательное охлаждение на воздухе, во время которого происходит превращение аустенита в мартенсит. Проведение ступенчатой закалки позволяет уменьшить деформации, коробление и опасность возникновения трещин.

Изотермическая закалка выполняется так же, как и ступенчатая, но выдержка при температуре несколько выше Мн увеличивается для завершения превращений аустенита в бейнит. Данный способ закалки применяется для легированных сталей и последующий отпуск не производится. В качестве охлаждающих сред при ступенчатой и изотермической закалках применяют расплавленные соли (55% KNO и 45%NaNO3) илищелочи (20%NaOH и 80%KOH).

Закалка с самоотпуском применяется в основном для ударного инструмента (зубила, кузнечный инструмент и т. д.), когда для обеспечения высокой стойкости инструмента требуется, чтобы твердость постепенно и равномерно снижалась от рабочей к хвостовой части. Такое распределение твердости возможно, если при закалке нагретую деталь рабочей частью погружают в воду и вынимают после кратковременной выдержки. За счет тепла хвостовой части детали её рабочая часть нагревается и отпускается. Температуру нагрева определяют по цветам побежалости, появление которых объясняется возникновением на шлифованной поверхности тонких слоев окислов. Цвет слоя зависит от его толщины, которая определяется температурой. При температуре 220 о С поверхность приобретает светло-желтый цвет, при 230 о С — желтый, при 240 о С — темно-желтый, при 250 о С — оранжевый, при 260 о С — коричневый, при 270 о С — красный, при 280 о С — фиолетовый, при 300 о С — синий, при 320 о С — серый. Этот давно известный способ сейчас становится все более востребованным, что объясняется стремлением к энергосберегающим технологиям и открывающимися возможностями предварительного моделирования закалочного процесса и его выполнения в автоматическом режиме.

Источник

Нормализация и закалка стали. Закалочные напряжения. Способы охлаждения при закалке

Закалка – термическая обработка, в результате которой в сплавах образуется неравновесная структура. Неравновесные структуры можно получить только в том случае, если в сплавах имеются превращения в твёрдом состоянии: переменная растворимость, полиморфные превращения твёрдых растворов, распад высокотемпературного твёрдого раствора по эвтектоидной реакции. Для получения неравновесной структуры сплав нагревают выше температуры фазового превращения в твёрдом состоянии, после чего быстро охлаждают, чтобы предотвратить равновесное превращение при охлаждении.

Конструкционные и инструментальные сплавы закаливают для упрочнения (особенно – с эвтектоидным превращением). Прочность возрастает либо вследствие мартенситного фазового перехода, либо из-за понижения температуры эвтектоидной реакции, приводящей к измельчению зёрен, образующих эвтектоидную смесь.

Нормализация (термообработка) — вид термической обработки стали, заключающийся в нагреве её выше верхней критической точки, выдержке при этой температуре и последующем охлаждении на спокойном воздухе с целью придания металлу однородной мелкозернистой структуры (не достигнутой при предыдущих процессах — литьё, ковке или прокатке) и как следствие — повышение его механических свойств (пластичности и ударной вязкости).

Читайте также:  Ацикловир мазь способ хранения

Закалочные напряжения складываются из термических и структурных напряжений. При закалке всегда возникает перепад температур по сечению изделия. Разная величина термического сжатия наружных и внутренних слоев в период охлаждения обусловливает возникновение термических напряжений. [1]

Суммарные закалочные напряжения растут с увеличением температуры нагрева под закалку и с повышением скорости охлаждения, так как в обоих этих случаях возрастает перепад температур по сечению изделия. Увеличение перепада температур приводит к росту термических и структурных напряжений. [2]

Хотя закалочные напряжения действительно существуют, трудно предположить, что они могут вызвать увеличение предела текучести в семь раз. [3]

Формирование временных и остаточных закалочных напряжений в детали происходит под действием температурных полей, изменяющихся в процессе закалки. Поэтому для исследования напряжений необходимо уметь рассчитывать температуру в любой точке детали для любого момента времени. [4]

Отпуск снижает закалочные напряжения. После отпуска следует охлаждение на воздухе, в период которого происходит превращение в мартенсит той части аустенита, которая сохранилась в стали в результате прерванного охлаждения. [5]

Охлаждение при закалке может производиться различными способами. Наиболее широко применяется охлаждение в масле. Для уменьшения опасности появления закалочных трещин перед погружением инструмента в масло рекомендуется произвести его подстуживание до температур 900 — 1000°. Обычно инструмент охлаждают в масле до температур 150 — 200°, а затем — на спокойном воздухе. Температуру инструмента при извлечении его из масла можно определить по внешним признакам: если масло на поверхности инструмента слегка дымится, значит он имеет температуру 200°; если же масло дымится сильно, это значит, что температура инструмента превышает 200° и его нужно снова погрузить в масло. Необходимую твердость и красностойкость инструмента из быстрорежущей стали можно получить и при охлаждении его на воздухе. Однако, как показывает практика, режущие свойства инструмента в этом случае хуже, чем при закалке в масле.

Хорошие результаты в смысле уменьшения деформации инструмента дает ступенчатая закалка. При этом способе обработки изделия охлаждают в течение 10-20 мин. в селитровой ванне, нагретой до температур 450 — 550°, и затем окончательно охлаждают в масле или на спокойном воздухе. Этот способ применяют для инструментов небольших сечений, а также сложной формы. На рижском заводе «Автоэлектроприбор» резцы и дисковые фрезы из стали Р18 подвергались термической обработке по следующему режиму: нагревались до температуры 1270°, охлаждались 10-15 мин. в селитровой ванне при температуре 530° и затем на воздухе после закалки применялся двукратный отпуск. В результате указанной обработки твердость инструмента составляла HR = 62 — 66. Как резцы, так и дисковые фрезы показали большую стойкость в работе.

Применяется также изотермическая закалка инструментов из быстрорежущей стали. При этом изделия охлаждаются в течение 20 — 60 мин. в соляной ванне температурой 200 — 300° и затем на воздухе. После закалки структура быстрорежущей стали содержит около 50% легированного мартенсита, 30 — 40% легированного остаточного аустенита и некоторое количество карбидов, которые при нагреве не перешли в аустенит. Твердость быстрорежущей стали после правильной закалки должна быть Нд = 60 — 63. Более высокая твердость чаще всего является результатом недогрева инструмента при закалке. Для проверки этого инструмент подвергают дополнительному отпуску при температуре 560°. Если действительно имел место недогрев, то твердость инструмента после отпуска значительно снизится.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.001 с) .

Источник

Большая Энциклопедия Нефти и Газа

Закалочное напряжение

Закалочные напряжения складываются из термических и структурных напряжений. При закалке всегда возникает перепад температур по сечению изделия. Разная величина термического сжатия наружных и внутренних слоев в период охлаждения обусловливает возникновение термических напряжений. [1]

Читайте также:  Способ пластики по лихтенштейну

Суммарные закалочные напряжения растут с увеличением температуры нагрева под закалку и с повышением скорости охлаждения, так как в обоих этих случаях возрастает перепад температур по сечению изделия. Увеличение перепада температур приводит к росту термических и структурных напряжений. [2]

Хотя закалочные напряжения действительно существуют, трудно предположить, что они могут вызвать увеличение предела текучести в семь раз. [3]

Формирование временных и остаточных закалочных напряжений в детали происходит под действием температурных полей, изменяющихся в процессе закалки. Поэтому для исследования напряжений необходимо уметь рассчитывать температуру в любой точке детали для любого момента времени. [4]

Отпуск снижает закалочные напряжения . После отпуска следует охлаждение на воздухе, в период которого происходит превращение в мартенсит той части аустенита, которая сохранилась в стали в результате прерванного охлаждения. [5]

Чтобы снять закалочные напряжения , после закалки производят отпуск. Детали, предназначенные для работы на истирание, проходят низкий отпуск при температуре 200 — 250 С. Чугунные отливки, не работающие на истирание, подвергаются высокому отпуску при 500 — 600 С. При отпуске закаленных чугунов твердость понижается значительно меньше, чем при отпуске стали. Это объясняется тем, что в структуре закаленного чугуна большое количество остаточного аустенита, а также тем, что в нем содержится большое количество кремния, который повышает отпускоустойчи-вость мартенсита. [6]

Это уменьшает закалочные напряжения , коробление и улучшает качество закалки. [7]

Чтобы снять закалочные напряжения , после закалки производят отпуск. Детали, предназначенные для работы на истирание, проходят низкий отпуск при температуре 200 — 250 С. Чугунные отливки, не работающие на истирание, подвергаются высокому отпуску при температуре 500 — 600 С. При отпуске закаленных чугунов твердость понижается значительно меньше, чем при отпуске стали. Это объясняется тем, что в структуре закаленного чугуна имеется большое количество остаточного аустенита, а также тем, что в нем содержится большое количество кремния, который повышает отпускоустойчивость мартенсита. [8]

Чтобы снять закалочные напряжения , после закалки производят отпуск. Детали, предназначенные для работы на истирание, проходят низкий отпуск при температуре 200 — 250 С. Чугунные отливки, не работающие на истирание, подвергаются высокому отпуску при 500 — 600 С. При отпуске закаленных чугунов твердость понижается значительно меньше, чем при отпуске стали. Это объясняется тем, что в структуре закаленного чугуна большое количество остаточного аустенита, а также тем, что в нем содержится большое количество кремния, который повышает отпускоустойчи-вость мартенсита. [9]

Для устранения закалочных напряжений и управления в известных пределах термическими напряжениями проводят специальную температурную обработку — отжиг стекла. Если выдерживать некоторое время закаленное стеклянное изделие при достаточно высокой температуре, то благодаря пластической деформации стекла натяжения в нем исчезают. [10]

Для уменьшения закалочных напряжений и изменений формы инструмент стараются проектировать по возможности симметричным, чтобы нагрев и охлаждение происходили равномерно во всех направлениях. При наличии внутренних и внешних ребер жесткости, стенок, асимметричных деталей следует уделять особое внимание равномерному изменению температуры. [11]

Рост зерна, закалочные напряжения , повышение твердости сверх допустимых значений, неравномерное распределение карбидов снижают сопротивление хрупкому разрушению. Так как практически невозможно получить высокие значения всех перечисленных свойств, устанавливают, какое из них является решающим в зависимости от условий работы, конструкции штампа и характера производства. Во всех случаях массового производства необходимо обеспечить высокую стойкость инструмента. Инструмент холодного деформирования изготовляют из различных сталей: углеродистых и легированных. [12]

Самоотпуск эффективно снижает закалочные напряжения . [14]

После низкого отпуска снижаются закалочные напряжения , мартенсит закалки ( рис. 3.12, 6) превращается в мартенсит отпуска ( рис. 3.12, в), повышается прочность и несколько — вязкость. [15]

Источник

Оцените статью
Разные способы