Как можно решить задачу тремя способами

Как решать задачи с процентами

О чем эта статья:

Основные определения

Когда мы сравниваем разные части целого, мы используем такие понятия, как половина (1/2), треть (1/3), четверть (1/4). Это удобно: отрезать половину пирога, пройти треть пути, закончить первую четверть в школе.

Чтобы сравнивать сотые доли, придумали процент (1/100): с латинского языка — «за сто».

Процент — это одна сотая часть от любого числа. Обозначается вот так: %.

Чтобы узнать, как перевести проценты в дробь, нужно убрать знак % и разделить число на 100, как в примере выше.

А если нужно перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Например:

А вот, как перевести проценты в десятичную дробь — обратным действием:

Выразить дробь в процентах просто. Для перевода сначала превратим её в десятичную дробь, а потом используем предыдущее правило:

Типы задач на проценты

В 5, 6, 7, 8, 9 классах в задачках по математике на проценты сравнивают части одного целого, определяют долю части от целого, ищут целое по части. Давайте рассмотрим все виды задач на проценты.

Тип 1. Нахождение процента от числа

Чтобы найти процент от числа, нужно число умножить на процент.

Задача. За месяц на заводе изготовили 500 стульев. 20% изготовленных стульев не прошли контроль качества. Сколько стульев не прошло контроль качества?

Как решаем: нужно найти 20% от общего количества изготовленных стульев (500).

Из общего количества изготовленных стульев контроль не прошли 100 штук.

Тип 2. Нахождение числа по его проценту

Чтобы найти число по его проценту, нужно его известную часть разделить на то, сколько процентов она составляет от числа.

Задачи по поиску процента по числу и числа по его проценту очень похожи. Чтобы не перепутать — внимательно читаем условия, иначе зайдем в тупик или решим неправильно. Если в задании есть слова «который», «что составляет» и «который составляет» — перед нами задача по нахождению числа по его проценту.

Задача. Школьник решил 38 задач из учебника. Что составляет 16% числа всех задач в книге. Сколько всего задач собрано в этом учебнике?

Как решаем: мы не знаем, сколько всего задач в учебнике. Но нам известно, что 38 задач составляют 16% от общего количества. Запишем 16% в виде дроби: 0,16. Далее известную нам часть целого разделим на ту долю, которую она составляет от всего целого.

38/0,16 = 38 * 100/16 = 237,5

Значит 237 задачи включили в этот сборник.

Тип 3. Нахождение процентного отношения двух чисел

Чтобы найти, сколько процентов одно число составляет от другого, нужно ту часть, о которой спрашивается, разделить на общее количество и умножить на 100%.

Задача. В классе учится 25 человек. 10 из них — девочки. Сколько процентов девочек в классе?

Как решаем: возьмем алгоритм из правила выше:

10/25 * 100% = 2/5 * 100% = 2 * 100/5 = 40%

В классе учится 10 девочек — это 40%.

Тип 4. Увеличение числа на процент

Чтобы увеличить число на некоторое количество процентов, нужно найти число, которое выражает нужное количество процентов от данного числа, и сложить его с данным числом.

Формула расчета процента от числа выглядит так:

a = b * ((1 + c) / 100),

где a — число, которое нужно найти,

b — первоначальное значение,

c — проценты.

Задача. В прошлом месяце стикер-пак стоил 110 рублей. А в этом месяце на 12% больше. Сколько стоит стикер-пак?

Как решаем: подставим в формулу данные из условий задачи.

110 * (1 + 12/100) = 110 * 1,12 = 123,2.

Стоимость стикер-пака в этом месяце — 123 рубля 20 копеек.

Тип 5. Уменьшение числа на процент

Чтобы уменьшить число на несколько процентов, нужно найти число, которое выражает нужное количество процентов данного числа, и вычесть его от данного числа.

Формула расчета выглядит так:

a = b * ((1 — c) / 100),

где a — число, которое нужно найти,

b — первоначальное значение,

c — проценты.

Задача. В прошлом году школу закончили 100 ребят. А в это году выпускников на 25 меньше. Сколько выпускников в этом году?

Как решаем: подставим в формулу данные из условий задачи.

100 * (1 – 25/100) = 75

75 выпускников закончат школу в этом году.

Тип 6. Задачи на простые проценты

Простые проценты — метод расчета процентов, при котором начисления происходят на первоначальную сумму вклада или долга.

Формула расчета выглядит так:

S = а * ((1 + у * х)/ 100),

где a — исходная сумма,

S — сумма, которая наращивается,

x — процентная ставка,

y — количество периодов начисления процента.

Задача. Родители взяли в банке кредит 5000 рублей, чтобы купить тебе что-то классное. Кредит на год под 15% ежемесячно. Сколько денег они внесут через год?

Как решаем: подставим в формулу данные из условий задачи.

5000 * (1 + 12 * 15/100) = 14000

Родители через год внесут в банк 14000 рублей.

Тип 7. Задачи на сложные проценты

Сложные проценты — это метод расчета процентов, когда проценты прибыли прибавляют к сумме на остатке каждый месяц. В следующий раз проценты начисляют на эту новую сумму.

Формула расчета выглядит так:

S = а * ((1 + х)/100) y ,

где S — наращиваемая сумма,

a — исходная,

x — процентная ставка,

y — количество периодов начисления процента.

Задача. Папа взял в банке кредит 25000 рублей на 3 месяца под 15%. Нам нужно узнать, сколько денег придется заплатить банку по истечении срока кредита.

Как решаем: просто подставим в формулу данные из условий задачи:

25000 * (1 + 15/100)3 = 38021,875 — искомая сумма.

Онлайн обучение по математике для учеников с 1 по 11 классы! Уроки ведут лучшие преподаватели!

Способы нахождения процента

Универсальная формула для решения задач на проценты:

A * b = C,
где A — исходное число,
b — проценты, переведенные в десятичную дробь,
C — новое число.

Чтобы применить алгоритм, нужно прочитать задачу, отметить, какие два числа нам известны и найти третье.

Есть еще четыре способа поиска процентов. Рассмотрим каждый из них.

Деление числа на 100

При делении на 100 получается 1% от этого числа. Это правило можно использовать по-разному. Например, чтобы узнать процент от суммы, нужно умножить их на размер 1%. А чтобы перевести известное значение, следует разделить его на размер 1%. Этот метод отлично помогает в вопросе, как перевести целое число в проценты.

Представьте, что вы пришли в магазин за шоколадом. Обычно он стоит 250 рублей, но сегодня скидка 15%. Если у вас есть дисконтная карта магазина, шоколад обойдется вам в 225 рублей. Чем будет выгоднее воспользоваться: скидкой или картой?

Как решаем:
  1. Переведем 15% в рубли:
    250 : 100 = 2,5 — это 1% от стоимости шоколада,
    значит 2,5 * 15 = 37,5 — это 15%.
  2. 250 — 37,5 = 212,5.
  3. 212,5

Ответ: выгоднее воспользоваться скидкой 15%.

Составление пропорции

Пропорция — определенное соотношение частей между собой.

С помощью метода пропорции можно рассчитать любые %. Выглядит это так:

Читается: a относится к b так, как с относится к d. Также важно помнить, что произведение крайних членов равно произведению средних. Чтобы узнать неизвестное из этого равенства, нужно решить простейшее уравнение.

Рассмотрим пример. На сколько выгодно покупать спортивную футболку за 1390 рублей при условии, что в магазине в честь дня всех влюбленных действует скидка 14%?

Как решаем:
  1. Узнаем сколько стоит футболка сейчас в % соотношении:
    100 — 14 = 86,
    значит 1390 рублей это 86%.
  2. Составим пропорцию:
    1390 : 100 = х : 86,
    х = 86 * (1390 : 100),
    х = 1195,4.
  3. 1390 — 1195,4 = 194,6.

Ответ: купить спортивную футболку выгоднее на 194,6 рубля.

Соотношения чисел

Есть случаи, при которых можно использовать простые дроби.

  • 10% — десятая часть целого. Чтобы найти десять %, понадобится известное разделить на 10.
  • 20% — пятая часть целого. Чтобы вычислить двадцать % от известного, его нужно разделить на 5.
  • 25% — четверть целого. Чтобы вычислить двадцать пять %, понадобится известное разделить на 4.
  • 50% — половина целого. Чтобы вычислить половину, нужно известное разделить на 2.
  • 75% — три четверти целого. Чтобы вычислить семьдесят пять %, нужно известное значение разделить на 4 и умножить на 3.

Задача для тренировки. В черную пятницу вы нашли отличный пиджак со скидкой 25%. В обычный день он стоит 8500 рублей, но сейчас с собой есть только 6400 рублей. Хватит ли средств для покупки?

Как решаем:
  1. 100 — 25 = 75,
    значит нужно заплатить 75% от первоначальной цены.
  2. Используем правило соотношения чисел:
    8500 : 4 * 3 = 6375.

Ответ: средств хватит, так как пиджак стоит 6375 рублей.

Задачи на проценты с решением

Как мы уже убедились, решать задачи на проценты совсем несложно. Для закрепления материала рассмотрим реальные примеры на проценты из учебников и несколько заданий для подготовки к ЕГЭ.

Задача 1. Организм взрослого человека на 70% состоит из воды. Какова масса воды в теле человека, который весит 76 кг?

76 : 100 = 0,76 — 1% от массы человека

Ответ: масса воды 53,2 кг

Задача 2. Цена товара понизилась на 40%, затем еще на 25%. На сколько процентов понизилась цена товара по сравнению с первоначальной ценой?

Обозначим первоначальную цену товара через х. После первого понижения цена станет равной.

Второе понижение цены составляет 25% от новой цены 0,6х, поэтому после второго понижения получим:

0,6х — 0,25 * 0,6x = 0,45x

После двух понижений изменение цены составит:

Так как величина 0,55x составляет 55% от величины x, то цена товара понизилась на 55%.

Задача 3. Четыре пары брюк дешевле одного пальто на 8%. На сколько процентов пять пар брюк стоят дороже, чем одно пальто?

По условиям задачи стоимость четырех пар брюк — это 92% от стоимости пальто

Получается, что стоимость одной пары брюк — это 23% стоимости пальто.

Теперь умножим стоимость одной пары брюк на пять и узнаем, что пять пар брюк обойдутся в 115% стоимости пальто.

Ответ: пять пар брюк на 15% дороже, чем одно пальто.

Задача 4. Семья состоит из трех человек: муж, жена и дочь-студентка. Если зарплата мужа вырастет в два раза, общий доход семьи возрастет на 67%. Если дочери в три раза урежут стипендию, общий доход этой семьи уменьшится на 4%. Вычислить, какой процент в общий доход семьи приносит заработок жены.

По условиям задачи общий доход семьи напрямую зависит от доходов мужа. Благодаря увеличению зарплаты общий доход семьи вырастет на 67%. Значит, зарплата мужа составляет как раз 67% от общего дохода.

Если стипендия дочери уменьшится в три раза (т.е. на 1/3), останется 2/3 — это и есть 4%, на которые уменьшился бы семейных доход.

Можно составить простую пропорцию и выяснить, что раз 2/3 стипендии — это 4% дохода, то вся стипендия — это 6%.

А теперь отнимем от всего дохода вклад мужа и дочери и узнаем, какой процент составляет заработок жены в общем доходе семьи: 100 – 67 – 6 = 27.

Ответ: заработок жены составляет 27%.

Задача 5. В свежих абрикосах 90% влаги, а в сухофрукте кураге только 5%. Сколько килограммов абрикосов нужно, чтобы получить 20 килограммов кураги?

Исходя из условия, в абрикосах 10% питательного вещества, а в кураге в концентрированном виде — 95%.

Поэтому в 20 килограммах кураги 20 * 0,95 = 19 кг питательного вещества.

На вопрос задачи мы ответим, если разделим одинаковое количество питательного вещества, которое содержится в разных объемах свежих абрикосов и кураги, на его процентное содержание в абрикосах.

Ответ: 190 кг свежих абрикосов потребуется для изготовления 20 кг кураги.

Источник

Современные методы решения текстовых задач.

Учитель начальной школы НОУ СОШ «Эрудит»

Современные методы решения текстовых задач.

Чтобы научить ребенка работе над текстовой задачей, учитель может использовать различные приемы обучения, соответствующие совершенствованию логического мышления и творческих способностей детей.

Мы ране рассматривали традиционно используемые приемы работы над текстовой задачей. Предлагаю рассмотреть еще несколько конкретных примеров работы над задачей.

Прием, основанный на предложенных объектах, сюжете, вспомогательной модели. Данный прием рассчитан на учащихся второго-третьего классов.

На доске заранее вывешиваются карточки с объектами «овощи», «свекла», «морковь», «картофель», а также вспомогательная модель задачи.

Учитель дает учащимся следующие команды:

— Выберите слова, характеризующие сюжет задачи. (Школьники вырастили овощи.)

— Где выращивают школьники овощи? (На пришкольном участке).

— Какое слово из предложенных объектов, записанных в столбце, общее? (Овощи.)

— Соотнесите предложенные объекты со схемой, указав количественные характеристики. (Целое — овощи. Количество овощей неизвестно. Части: свекла — 20 кг, морковь — 12 кг, картофель — 8 кг).

— Сформулируйте текст задачи. (Школьники вырастили на пришкольном участке 20 кг свеклы, 12 кг моркови и 8 кг картофеля. Сколько килограммов овощей вырастили школьники?)

— О какой величине говорится в задаче? (О массе.)

— Как иначе можно сформулировать требование? (Какова масса собранного урожая?)

Далее учитель предлагает ученикам самостоятельно решить эту задачу в рабочих тетрадях.

20 + 12 + 8 = 40 (кг)

Ответ: 40 кг урожая собрали школьники.

Затем совместно с учителем дети проверяют правильность решения предложенной задачи. В качестве способа проверки могут выступать сравнение своего решения с выполненным на закрытой части доски, чтение решения вслух.

Прием составления задачи по предложенной программе действий. Данный прием развивает коммуникативные способности ребенка, способность неординарно мыслить, и рассчитан на учащихся не младше второго класса. На доске вывешиваются схемы. Учитель предлагает учащимся составить по данной схеме задачу, а затем решить ее.

Дети составляют задачу: «Миша решил 3 уравнения и 7 примеров. На сколько больше примеров, чем уравнений, решил Миша? На сколько меньше уравнений, чем примеров, решил Миша?»

Решение: 7 — 3 = 4 (шт.)

Ответ: на 4 примера больше, чем уравнений, решил Миша.

Учитель спрашивает одного из учеников, как решить эту задачу и что в итоге получится. Остальные дети делают проверку.

Прием составления задачи на основе нескольких задач, содержащих один сюжет и часть общих объектов с их количественными характеристиками.

Цель данного приема состоит в том, чтобы учить школьников выделять основные структурные компоненты задачи (условие и требование). Подобрав специальным образом численные данные, учитель может использовать этот прием в любом классе начальной школы.

Задача 1. В школьную библиотеку привезли новые учебники. В первый день библиотекари расставили 210 учебников по русскому языку, во второй — 135 учебников по математике. Сколько учебников расставили библиотекари по полкам за два дня?

Задача 2. В школьную библиотеку привезли учебники. В первый день библиотекари расставили по полкам 210 учебников по русскому языку, во второй — 63 учебника по чтению. Сколько учебников расставили библиотекари по полкам за два дня?

Задача 3. В школьную библиотеку привезли учебники. В первый день библиотекари расставили по полкам 97 учебников по английскому языку, во второй — 63 учебника по чтению. Сколько расставили библиотекари по полкам за два дня?

Учитель дает следующие команды детям:

— Что общего в данных задачах? (Сюжет, требование).

— Что можно сказать об объектах и количественных характеристиках задач? (Часть объектов и их количественные характеристики в первой и второй задачах, а также во второй и третьей задачах одинаковые).

— Сформулируйте текст одной задачи, используя все объекты и их количественные характеристики. (В школьную библиотеку привезли новые учебники. Из них в первый день расставили по полкам 210 учебников по русскому языку и 97 по английскому языку, во второй — 135 учебников по математике и 63 учебника по чтению. Сколько учебников расставили библиотекари по полкам за два дня?)

Прием обучения составлению задач по предложенному решению с подробным пояснением.

Цель данного приема состоит в том, чтобы учить детей соотносить текстовую задачу с предложенным решением.

На доске дано решение этой задачи.

1) 3 + 15 = 18 — концертов дал детский хор в городе и в санатории.

2) 30 — 18 = 12 — концертов дал детский хор в сельских клубах

Учитель задает детям вопросы:

— Известно ли нам, где давал концерты детский хор? (В городе, санатории, сельских клубах.)

— Известно ли нам, сколько концертов дал хор в городе? (3 или 15)

— Известно ли нам, сколько концертов дал хор в санатории? (15 или 3)

— Сколько всего концертов дал хор? (30)

— Составьте задачу по первому равенству. (Детский хор дал 3 концерта в городе и 15 концертов в санатории. Сколько всего концертов дал детский хор в городе и в санатории?)

— Составьте задачу по второму равенству. (За лето детский хор дал 30 концертов. Из них 18 — в городе и санатории, а остальные в сельских клубах. Сколько концертов дал детский хор в сельских клубах?)

— Опираясь на решение задачи, сформулируйте требование задачи. (Узнать, сколько концертов дал детский хор в сельских клубах).

— Сформулируйте текст задачи, опираясь на два действия. (Детский хор дал 30 концертов. Из них 3 в городе, 15 — в санатории, а остальные — в сельских клубах. Сколько концертов дал детский хор в сельских клубах?)

Прием составления текста задачи по сюжетным рисункам с изменением действия

Цель данного приема состоит в том, чтобы учить детей находить математические модели в реальной ситуации, учить переводить сюжетную ситуацию на математический язык. Подбирая соответствующие сюжеты, учитель может применить прием в любом классе начальной школы.

— По рисункам определите сюжет задачи. Как он меняется от первого рисунка ко второму? (Курица снесла яйца, из них вылупились цыплята).

— Назовите объекты задачи. (Курица, яйца, цыплята).

— С какими из них мы будем проводить вычислительные операции? (С яйцами.)

— Что вы можете сказать о количественной характеристике объектов на первом рисунке? (На первом рисунке изображены 4 яйца).

— На втором рисунке из яиц вылупились цыплята. Сколько их? (3)

— Сформулируйте требование задачи. (Сколько яиц осталось целыми?)

— Сформулируйте текст задачи. (Курица высидела 4 яйца. Через некоторое время из 3 яиц вылупились цыплята. Сколько яиц осталось целыми?)

Рассмотренные приемы работы над текстовой задачей достаточно разнообразны, однако, они рассчитаны в основном на учащихся с уровнем знаний выше среднего. У учеников, которые обладают низким или средним уровнем, эти приемы работы над текстовой задачей позволяют, с помощью учителя или других учащихся, повысить уровень их обученности.

Примеры использования различных форм работы младших школьников в процессе решения текстовых задач

В поисках путей более эффективного использования структуры уроков разных типов особую значимость приобретает форма организации учебной деятельности учащихся на уроке.

Ранее были описаны признаки различных форм организации деятельности школьников на уроках математики, была дана характеристика этапам решения задачи и приемам их выполнения. Эти приемы стандартно применяются учителями начальной школы при фронтальной форме работы над задачей. Ниже я предлагаю рассмотрим примеры реализации групповой и индивидуальной форм работы учащихся при решении текстовых задач.

Как известно, признаками групповой работы учащихся на уроке являются следующие:

— класс на данном уроке делится на группы для решения конкретных учебных задач;

— каждая группа получает определенное задание (либо одинаковое, либо дифференцированное) и выполняет его сообща под непосредственным руководством лидера группы или учителя;

— задания в группе выполняются таким способом, который позволяет учитывать и оценивать индивидуальный вклад каждого члена группы;

— состав группы непостоянный, он подбирается с учетом того, чтобы с максимальной эффективностью для коллектива могли реализоваться учебные возможности каждого члена группы.

Задания, решаемые некоторым количеством учащихся, можно разделить на две группы: репродуктивные и продуктивные.

К репродуктивным заданиям относится, например, решение арифметических сюжетных задач знакомых видов. От учащихся требуется при этом воспроизведение знаний и их применение в привычной ситуации — работа по образцу, выполнение тренировочных упражнений.

К продуктивным заданиям относятся упражнения, отличающиеся от стандартных. Ученикам приходится применять знания в измененной или в новой незнакомой ситуации, осуществлять более сложные мыслительные действия (например, поисковые, преобразующие), создавать новый продукт (составлять задачи, сочинять сказки на основе сюжетных задач). В процессе работы над продуктивными заданиями школьники приобретают опыт творческой деятельности.

Дифференцированная работа чаще всего организуется следующим образом: учащимся с низким и ниже среднего уровнем обученности предлагаются репродуктивные задания, а ученикам со средним, выше среднего и высоким уровнем обученности — творческие задания.

Рассмотрим групповую работу на примере конкретной задачи (1 класс).

«В вазе лежало 5 желтых и 2 зеленых яблока. 3 яблока съели. Сколько яблок осталось?»

Задание для 1-й группы учащихся с низким уровнем обученности. Решите задачу. Подумайте, можно ли ее решить другим способом.

Задание для 2-й группы учащихся со средним уровнем обученности. Решите задачу двумя способами. Придумайте задачу с другим сюжетом так, чтобы решение при этом не изменилось.

Задание для 3-й группы учащихся с уровнем обученности выше среднего. Решите задачу двумя способами. Составьте задачу, обратную данной, и решите ее.

Задание для 4-й группы учащихся с высоким уровнем обученности. Решите задачу двумя способами. Измените задачу так, чтобы ее можно было решить тремя способами. Решите полученную задачу тремя способами.

Следует отметить, что организация такой формы работы требует от учителя высокого уровня профессионального мастерства. Адекватное образование групп, распределение обязанностей внутри них, распределение учебного времени, разъяснение требований к оформлению записей, своевременная проверка качества выполнения задания должны быть продуманы с особой тщательностью, поскольку некоторые команды («Подумайте …», «Придумайте …», «Составьте …» и т.п.) чаще всего на уроках математики в младших классах выполняются фронтально, не сопровождаясь записями.

Можно предложить продуктивные задания всем ученикам. Но при этом детям с низким уровнем обученности даются задания с элементами творчества, в которых нужно применить знания в измененной ситуации, а остальным — творческие задания на применение знаний в новой ситуации.

Приведем пример дифференциации заданий для учащихся второго-третьего классов.

«Для новогодних подарков привезли 48 кг конфет. В пакетах было 12 кг конфет, в коробках — в три раза меньше, чем в пакетах, а остальные конфеты были в ящиках. Сколько килограммов конфет было в ящиках?»

Задание для 1-й группы учащихся с низким уровнем обученности. Решите задачу. Составьте задачу, обратную данной, и решите ее.

Задание для 2-й группы учащихся с ниже среднего уровнем обученности. Решите задачу. Придумайте задачу с другим сюжетом, но чтобы решение при этом не изменилось.

Задание для 3-й группы учащихся со средним уровнем обученности. Решите задачу. Измените вопрос к задаче так, чтобы она решалась в четыре действия.

Задание для 4-й группы учащихся с уровнем обученности выше среднего. Решите задачу. Составьте задачу, обратную данной, и решите ее. Измените вопрос и условия задачи так, чтобы данные об общем количестве конфет стали лишними. Запишите новую задачу и решите ее.

Задание для 5-й группы учащихся с высоким уровнем обученности. Решите задачу. Придумайте три различные задачи, с такими же данными, что и в приведенной задаче, используя жизненные ситуации.

При письменном решении задания, детям выдается образец выполнения работы Кроме групповой, в обучении решению задач младших школьников может применяться и индивидуальная форма работы учащихся.

Под индивидуальной работой учащихся подразумевается работа, которая выполняется ими по заданию и под контролем учителя в специально запланированное для этого время на уроке. Назначение такой формы работы — развитие познавательных способностей школьников, их инициативы в принятии решения, творческого и логического мышления.

При организации индивидуальной работы необходимо учитывать ее строгую регламентацию в целостной системе учебных работ, степень ее трудности и сложности. Это обусловливает значимость научно обоснованной классификации самостоятельных работ. Все виды самостоятельной работы, применяемые в учебном процессе, можно классифицировать по следующим признакам: по дидактической цели, по характеру учебной деятельности учащихся, по содержанию, по степени самостоятельности и элементу творчества учащихся.

При организации учебного процесса самостоятельная работа подразумевает, с одной стороны, учебное задание, которое должен выполнить ученик, с другой — форму проявления соответствующей деятельности (мышления, запоминания, воображения) при выполнении учеником данного задания. При этом ребенок, в конечном счете, должен получить либо новые, ранее не известные ему знания, либо углубить и расширить сферы действия уже полученных знаний. Все это подразумевает индивидуальный подход к ребенку через внутриклассную дифференциацию.

Наиболее важное значение в этом направлении работы имеют принцип доступности и систематичности изучаемого материала, связь теории с практикой, принцип постепенности в нарастании трудности, принцип творческой активности, которые можно реализовать через различные виды помощи ученику.

Рассмотрим это на примере задачи (третий-четвертый класс).

«Мастер за 1 час работы делает 2 изделия. Сколько изделий он сделал за два дня, если в первый день он работал 3 часа, а во второй — 4?»

Наиболее распространенными видами помощи являются:

1. Образец выполнения задания: показ способа решения, образца рассуждения (например, в виде подробной записи решения задачи) и оформления.

Запись решения в виде числового выражения. Запись решения в данной форме осуществляется поэтапно:

1) (шт.) — изготовлено в первый день;

2) (шт.) — сделано во второй день;

3) (шт.) — сделано всего. Или:

(шт.) — изготовлено мастером за два дня.

2. Справочные материалы: памятки, инструкции, теоретическая справка в виде правила, формулы, таблицы единиц величин.

Для того, чтобы проверить правильность решения, составьте и решите обратную задачу к данной по следующим этапам:

1) Подставь в текст задачи найденное значение искомого, то есть вместо вопроса задачи поставьте в текст задачи ответ на него;

2) Выбери новое искомое;

3) Сформулируй новую задачу;

4) Реши составленную задачу;

5) Сравни полученное число с той данной величиной прямой задачи, которая была выбрана в качестве искомой величины;

6) На основе этого сравнения составь соответствующее умозаключение о правильности решения прямой задачи.

Роль индивидуальной работы школьников возрастает в связи с изменением целей обучения, его направленностью на формирование навыков творческой деятельности, а также в связи с компьютеризацией обучения.

Доля самостоятельных (индивидуальных) работ в учебном процессе увеличивается от класса к классу, В начальных классах на нее отводится не менее 20%.

Итак, исходя из выше сказанного, можно сделать следующие выводы:

на современном этапе обучение младших школьников решению текстовых задач остается одним из важнейших направлений учебной деятельности, поскольку именно текстовые задачи являются связующим звеном между теоретическим обучением и применением знаний на практике;

для всестороннего раскрытия понятия текстовой задачи и рассмотрения различных жизненных ситуаций в начальной школе предлагаются текстовые задачи, которые можно классифицировать по ряду оснований;

решение любой текстовой задачи происходит по плану, включающему в себя ряд последовательных этапов;

обучение решению задач проходит в двух направлениях: выработка общего умения решать текстовые задачи и выработка умений решать задачи определенного вида. Применительно к начальным классам чаще других реализуется первое из двух направлений. В соответствии с учебной программой, деятельность учителя и учащихся нацелена на выработку у младших школьников умений решать текстовые задачи;

умение как психолого-педагогическая категория означает готовность и возможность человека (в данном контексте, младшего школьника) успешно выполнять какую-либо деятельность (в данном случае, решать текстовые задачи). В зависимости от уровня сформированности умения решать задачи учащихся можно разделить на три группы, соответственно с высоким, средним и низким уровнями. Критерии этих уровней описаны в методической литературе;

для достижения поставленной дидактической цели в обучении младших школьников решению текстовых задач учителю необходимо варьировать и сочетать различные формы (индивидуальную, групповую, фронтальную) организации деятельности учащихся на уроках математики. Вспомогательные материалы, призванные оказать помощь учителю, содержатся в специально издаваемых методических пособиях, публикуются на страницах журналов и в сети Internet.

Среди причин определяющих недостаточный уровень у учащихся умений решать задачи, я выделяю следующее:

Первая заключается в методике обучения, которая в данное время ориентировала учащихся не на формирование у учащихся обобщенных умений, а на “разучивание” способов решения задач определенных видов.

Вторая причина кроется в том, что учащиеся объективно отличаются друг от друга характером умственной деятельности, осуществляемой при решении задач.

На уроке учитель должен выбрать вариант организации и содержания решения задачи, а ученики должны выбрать способы решения задач.

Решение текстовых задач и нахождение разных способов их решения на уроках математики способствуют развитию у детей мышления, памяти, внимания, творческого воображения, наблюдательности, последовательности рассуждения и его доказательности; для развития умения кратко, четко и правильно излагать свои мысли.

Решение задач разными способами, получение из нее новых, более сложных задач и их решение в сравнении с решением исходной задачи создает предпосылки для формирования у ученика умения находить свой «оригинальный» способ решения задачи, воспитывает стремление вести «самостоятельно поиск решения новой задачи», той, которая раньше ему не встречалась.

Задачи с многоспособовыми решениями весьма полезны так же для внеклассных занятий, так как при этом открываются возможности по настоящему дифференцировать результаты каждого участника.

Такие задачи могут с успехом использоваться в качестве дополнительных индивидуальных знаний для тех учеников, которые легко и быстро справляются с задачей на уроке, или для желающих в качестве дополнительных домашний заданий.

Аргинская И.И., Дмитриева Н.Я.Обучаем по системе Л.В. Занкова: 2кл.: Кн. Для учителя. – М.: Просвещение, 1993. – 160с.

Занков Л.В. Беседы с учителями. (Вопросы обучения в начальных классах.) М., Просвещение, 1970. — 200с.

Иванов Д.А., Митрофанов К. Г., Соколова О.В. Компетентностный подход в образовании. Проблемы, понятия, инструментарий. М.: изд-во Академии повышения квалификации и проф. переподготовки работников образования.- 2006г.

Лысенкова. С. Н.. Когда легко учиться: из опыта работы учителя начальных классов школы №587 Москвы.- 2-е изд.М.: Педагогика, 1985 – 176с.(пед. поиск: опыт, проблемы, находки)

Мамыкина М. Ю. Работа над задачей в системе Л. В. Занкова. Начальная школа

Матвеева Н.А.. Различные арифметические способы решения задач. Начальная школа №3.2001г.

Математика. 1-4 классы: обучение решению текстовых задач/ авт.-сост. И.Л. Кустова. – Волгоград: Учитель, 2009. – 103с.

Новиков А.Учебный процесс в логике исторических типов организационной культуры. Народное образование №1, 2008г.с.163

Петерсон Л.Г., Кубышева М.А., Мазурина С.Е., Зайцева И.В. Что значит «уметь учиться». – М.: АПК и ППРО, УМЦ «Школа 2000…», 2008. – 80с.

Узорова, Нефёдова. 500 задач с пояснением, пошаговым решением и правильным оформлением. 1класс. АСТ.: Астрель. Москва.2004г.

Фадеева. Схемы записи задач. Начальная школа №4.2003г.

Фонин С.Н.. Моделирование, как важное средство обучения решению задач. Начальная школа. №3.1990г.

Источник

Читайте также:  Соленые зеленые помидоры без уксуса горячим способом
Оцените статью
Разные способы