Как классифицируются генераторы по способу возбуждения
КЛАССИФИКАЦИЯ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА
Классификация генераторов постоянного тока производится по способу их возбуждения. Они подразделяются на генераторы с независимым возбуждением и самовозбуждением.
Генераторы первого типа выполняются с электромагнитным и магнитоэлектрическим возбуждением. В генераторах с электромагнитным возбуждением обмотка возбуждения, располагаемая на главных полюсах, подключается к независимому источнику питания (рис. 1, а). Ток в цепи возбуждения Iв может изменяться в широких пределах с помощью переменного резистора Ra. Мощность, потребляемая обмоткой возбуждения, невелика и в номинальном режиме составляет 1-5 % номинальной мощности якоря генератора. Обычно процентное значение мощности возбуждения уменьшается с возрастанием номинальной мощности машины.
Генераторы с магнитоэлектрическим возбуждением возбуждаются постоянными магнитами, из которых изготовляются полюсы машины. С таким видом возбуждения выполняются генераторы относительно небольшой мощности, которые применяются в специальных случаях. Недостатком генераторов с магнитоэлектрическим возбуждением является трудность регулирования напряжения.
У генераторов с самовозбуждением обмотка возбуждения получает питание от собственного якоря. В зависимости от способа ее включения генераторы с самовозбуждением подразделяются на генераторы с параллельным, последовательным и смешанным возбуждением.
Схема соединения генератора параллельного возбуждения показана на рис. 1,б. Переменный резистор RB дает возможность изменять ток возбуждения Iв и, следовательно, выходное напряжение. Ток якоря Ia у этого генератора равен Ia = I + Iв, где I — ток нагрузки. Ток возбуждения относительно мал и для номинального режима составляет 1-5 % номинального тока машины.
У генератора последовательного возбуждения обмотка возбуждения соединяется последовательно с якорем и ее ток возбуждения равен току якоря и току нагрузки: Iв = Ia =I (рис. 1, в).
У генераторов смешанного возбуждения (рис. 1, г) на полюсах размещаются две обмотки. Одна из них, имеющая большое число витков и выполненная из проводников относительно небольшого сечения, включается параллельно с якорем, а другая обмотка с малым числом витков из проводников большого сечения включается последовательно с якорем. Ток якоря такого генератора равен Ia = I + Iв.
У этих генераторов параллельная и последовательная обмотки могут быть включены согласно (МДС этих обмоток направлены одинаково) и встречно (их МДС направлены противоположно). В зависимости от этого различаются генераторы смешанного согласного включения и генераторы смешанного встречного включения. Обычно в генераторах смешанного возбуждения основная часть МДС возбуждения создается параллельной обмоткой. Генераторы параллельного, последовательного и смешанного возбуждения иногда называют соответственно генераторами шунтового, сериесного и компаундного возбуждения.
Согласно ГОСТ 183-74 для машин постоянного тока принято следующее обозначение выводов обмоток: обмотки якоря Я1-Я2, параллельной обмотки возбуждения Ш1—Ш2, последовательной обмотки возбуждения С1—С2, обмотки дополнительных полюсов Д1—Д2, компенсационной обмотки К1-К2. Цифра 1 обозначает начало, а 2 — конец обмотки.
Источник
Классификация генераторов по способу возбуждения
В зависимости от способа возбуждения основного магнитного поля машины различают генераторы с независимым, параллельным, последовательным и смешанным возбуждением.
Генератор, обмотка возбуждения которого получает питание от постороннего источника тока (например, от аккумуляторной батареи или от другого генератора постоянного тока), называется генератором с независимым возбуждением (рис. 5-41,а).
Генератор с параллельным возбуждением имеет обмотку возбуждения, подключенную параллельно к якорю (рис. 5-41,б). В генераторе последовательного возбуждения обмотка возбуждения соединена последовательно с якорем (рис. 5-41,в).
В генераторе со смешанным возбуждением на главных полюсах помещаются две обмотки: одна из них соединяется параллельно, другая — последовательно с якорем (рис. 5-41,г).
Рис. 5-41. Генераторы постоянного тока.
По параллельной обмотке возбуждения проходит небольшой ток, составляющий 1—5% номинального тока якоря. Она выполняется обычно с большим числом витков из проводника относительно небольшого сечения. По последовательной обмотке возбуждения проходит полный ток якоря, поэтому она выполняется с небольшим числом витков из проводника относительного большого сечения.
Генераторы малой мощности выполняются иногда с постоянными магнитами; их можно назвать магнито-электрическими. По свойствам они приближаются к генераторам с независимым возбуждением.
На щитке машины указываются номинальные величины: мощность (электрическая мощность на зажимах для генератора или мощность на валу для двигателя в ваттах или киловаттах), напряжение, ток, скорость вращения.
Источник
Общие сведения о генераторах постоянного тока
Автор: Евгений Живоглядов.
Дата публикации: 25 января 2013 .
Категория: Статьи.
Хотя в промышленности применяется главным образом переменный ток, генераторы постоянного тока широко используются в различных промышленных, транспортных и других установках (для питания электроприводов с широким регулированием скорости вращения, в электролизной промышленности, на судах, тепловозах и так далее). В этих случаях генераторы постоянного тока обычно приводятся во вращение электродвигателями переменного тока, паровыми турбинами или двигателями внутреннего сгорания.
Классификация генераторов постоянного тока по способу возбуждения
Различаются генераторы независимого возбуждения и генераторы с самовозбуждением.
Генераторы независимого возбуждения делятся на генераторы с электромагнитным возбуждением (рисунок 1, а), в которых обмотка возбуждения ОВ питается постоянным током от постороннего источника (аккумуляторная батарея, вспомогательный генератор или возбудитель постоянного тока, выпрямитель переменного тока), и на магнитоэлектрические генераторы с полюсами в виде постоянных магнитов. Генераторы последнего типа изготавливаются только на малые мощности. В данной главе рассматриваются генераторы с электромагнитным возбуждением.
В генераторах с самовозбуждением обмотки возбуждения питаются электрической энергией, вырабатываемой в самом генераторе.
Во всех генераторах с электромагнитным возбуждением на возбуждение расходуется 0,3 – 5% номинальной мощности машины. Первая цифра относится к самым мощным машинам, а вторая – к машинам мощностью около 1 кВт.
Генераторы с самовозбуждением в зависимости от способа включения обмоток возбуждения делятся на 1) генераторы параллельного возбуждения, или шунтовые (рисунок 1, б), 2) генераторы последовательного возбуждения, или сериесные (рисунок 1, в), и 3) генераторы смешанного возбуждения, или компаундные (рисунок 1, г).
Генераторы смешанного возбуждения имеют две обмотки возбуждения, расположенные на общих главных полюсах: параллельную и последовательную. Если эти обмотки создают намагничивающую силу одинакового направления, то их включение называется согласным; в противном случае соединение обмоток называется встречным. Обычно применяется согласное включение обмоток возбуждения, причем основная часть намагничивающей силы возбуждения (65 – 80%) создается параллельной обмоткой возбуждения.
Рисунок 1. Схемы генераторов и двигателей независимого (а), параллельного (б), последовательного (в), смешанного (г) возбуждения (сплошные стрелки – направления токов в режиме генератора, штриховые – в режиме двигателя)
На рисунке 1, г конец параллельной обмотки возбуждения (от реостата возбуждения) подключен за последовательной обмоткой возбуждения («длинный шунт»), однако этот конец может быть присоединен и непосредственно к якорю («короткий шунт»). Существенной разницы в этих вариантах соединения нет, так как падение напряжения в последовательной обмотке составляет только 0,2 – 1,0% от Uн и ток iв мал. Обычно применяется соединение, изображенное на рисунке 1, г.
В генераторе параллельного возбуждения ток возбуждения составляет 1 – 5% от номинального тока якоря Iан или тока нагрузки Iн = Iан – iв. В генераторах последовательного возбуждения эти токи равны друг другу: iв = Iа = I и падение напряжения на обмотке возбуждения при номинальной нагрузке составляет 1 – 5% от Uн. Обмотки возбуждения у генераторов параллельного возбуждения имеют большое число витков малого сечения, а у генераторов последовательного возбуждения – относительно малое число витков большого сечения.
В цепях обмоток параллельного возбуждения, а часто также в цепи обмотки независимого возбуждения для регулирования тока возбуждения включают реостаты Rр.в (рисунок 1, а, б, и г).
Крупные машины постоянного тока работают с независимым возбуждением. Машины малой и средней мощности большей частью имеют параллельное или смешанное возбуждение. Генераторы с последовательным возбуждением менее распространены.
Рисунок 2. Энергетическая диаграмма генератора независимого возбуждения |
Энергетическая диаграмма
Энергетическая диаграмма генератора независимого возбуждения представлена на рисунке 2. Получаемая от первичного двигателя механическая мощность P1 за вычетом потерь механических pмх, магнитных pмг и добавочных pд преобразуется в якоре в электромагнитную мощность Pэм. Мощность Pэм частично тратится на электрические потери pэла в цепи якоря (в обмотках якоря, добавочных полюсов и компенсационной и в переходном сопротивлении щеточного контакта), а остальная часть этой мощности представляет собой полезную мощность P2, отдаваемую потребителям. Потери на возбуждение pв в генераторе независимого возбуждения покрываются за счет постороннего источника тока.
На основании изложенного для генератора независимого возбуждения имеем уравнение мощностей
P2 = P1 – pмх – pмг – pд – pэла = Pэм – pэла | (1) |
Можно написать также следующее уравнение мощностей:
Аналогичные энергетические диаграммы можно построить и для других типов генераторов.
Уравнение вращающих моментов
Если все члены уравнения (2) разделить на угловую скорость вращения якоря
то получим уравнение вращающих моментов для установившегося режима работы:
(3) |
(4) |
представляет собой приложенный к валу вращающий момент первичного двигателя,
(5) |
– электромагнитный момент, развиваемый якорем, и
(6) |
– тормозной момент, соответствующий потерям на трение (Мтр) и магнитным и добавочный потерям (Мс.д), которые покрываются за счет механической мощности.
В неустановившемся режиме, когда скорость вращения изменяется, возникает также так называемый динамический момент вращения
(7) |
где J – момент инерции вращающихся частей генератора. Динамический момент соответствует изменению кинетической энергии вращающихся масс. При увеличении скорости вращения момент Mдин > 0 и, как и момент M0 + Mэм, являются тормозным. В данном случае кинетическая энергия вращающихся масс увеличивается за счет работы первичного двигателя. Если момент Mдин div > .uk-panel’>» data-uk-grid-margin>
Источник