Как классифицируются двс по способу смесеобразования

Классификация двигателей

В зависимости от способа приготовления топливовоздушной (горючей) смеси различают двигатели:

  • с внешним смесеобразованием
  • с внутренним смесеобразованием

Горючей смесью называют смесь паров топлива или горючего газа с воздухом в отношении, обеспечивающем сгорание ее в рабочем цилиндре двигателя. Образуется горючая смесь в двигателях в процессе смесеобразования. Она перемешивается в камере сгорания с остаточными продуктами сгорания и образует рабочую смесь.

Смесеобразование — процесс приготовления рабочей смеси. В двигателях внутреннего сгорания различают смесеобразование внешнее и внутреннее.

Внешнее смесеобразование — процесс приготовления рабочей смеси вне цилиндра двигателя — в карбюраторе (у двигателей, работающих на жидком легкоиепаряющемся топливе) или в смесителе — у двигателей, работающих на газе.

Внутреннее смесеобразование — процесс приготовления рабочей смеси внутри цилиндра. Топливо подается в камеру сгорания форсункой при помощи насоса высокого давления.

В быстроходных дизелях применяют два способа образования смеси: объемное и пленочное.

Объемным смесеобразованием называется такой способ образования горючей смеси, при котором топливо из жидкого состояния превращается в парообразное под действием вихревых потоков воздуха в камере сгорания.

Пленочный способ смесеобразования заключается в превращении топлива из жидкого состояния в парообразное в процессе перемещения тонкого слоя (пленки) топлива по поверхности камеры сгорания под действием потока воздуха. Для полного сгорания топлива при объемном смесеобразовании требуется, чтобы форсунки хорошо распыливали и равномерно распределяли топливо по объему камеры сгорания. В дизелях, работающих с пленочным смесеобразованием, топливо впрыскивается форсункой на поверхность камеры сгорания под малым углом к поверхности. Затем оно вихревыми потоками воздуха перемещается по нагретой поверхности камеры и испаряется. При таком способе смесеобразования к форсунке предъявляются менее высокие требования, чем при объемном.

Для полного сгорания топлива в двигателе требуется минимальное, так называемое теоретически необходимое, количество воздуха. Так, для сгорания 1 кг дизельного топлива требуется 0,496 кмоль воздуха, а для сгорания 1 кг бензина 0,516 кмоль воздуха. Однако вследствие несовершенства процесса смесеобразования количество воздуха, содержащегося в горючей смеси работающего двигателя, может быть больше или меньше, чем указано.

Отношение действительного количества воздуха, поступившего в цилиндр двигателя, к количеству воздуха, теоретически необходимому для полного сгорания топлива, называется коэффициентом избытка воздуха а. Он зависит от типа двигателя, конструкции, вида и качества топлива, режима и условий работы двигателя. У автомобильных двигателей, работающих на бензине, а = 0,85… 1,3. Наиболее благоприятные условия для сгорания топлива создаются при а = 0,85…0,9. Двигатель при этом развивает максимальную мощность. Наиболее экономичный режим работы — при а = 1,1…1,3. Это режим нагрузок, близких к полной.

Образование рабочей смеси в карбюраторных двигателях начинается в карбюраторе, продолжается во впускных трубопроводах и заканчивается в камере сжатия. В дизелях рабочая смесь образуется в камере сжатия при впрыске топлива в нее форсункой. Поэтому времени на приготовление рабочей смеси в дизелях будет меньше, чем в карбюраторных двигателях, и качество приготовления рабочей смеси хуже.

Для обеспечения полного сгорания единицы поступившего в цилиндр топлива дизелям нужно больше воздуха, чем карбюраторным двигателям. В связи с этим коэффициент избытка воздуха у дизелей колеблется на режимах полной и близкой к полной нагрузке в пределах 1,4…1,25, а на холостом ходу равен 5 и более единицам.

Если в составе рабочей смеси воздуха меньше, чем теоретически необходимо для полного сгорания содержащегося в смеси топлива, то такая смесь называется «богатой». Если а>1, т. е. в смеси воздуха больше, чем теоретически необходимо для сгорания топлива, то такая смесь называется «бедной».

Чем выше качество смесеобразования, тем ближе величина а к единице. Для каждого типа двигателя коэффициент а имеет свои значения. В процессе эксплуатации нарушается регулировка топливоподающей аппаратуры, загрязняются воздушные фильтры, а это приводит к повышению гидравлического сопротивления и снижению количества воздуха, поступающего в цилиндры. При этом рабочая смесь часто переобогащается. В результате топливо сгорает не полностью. Вместе с отработавшими газами в атмосферу выбрасываются токсичные их составляющие, такие, как окись углерода (СО), окись и двуокись азота (NO, N02). Они загрязняют окружающую среду. Наряду с этим ухудшается экономичность работы двигателя. Особенно много выделяется окиси углерода при работе бензиновых двигателей на обогащенной смеси. В небольших количествах СО выделяется при работе дизелей на холостом ходу. Это вызывается местными переобогащениями смеси вследствие неудовлетворительной работы топливной аппаратуры.

Для уменьшения загрязнения окружающей среды необходимо своевременно и высококачественно регулировать топливоподающую аппаратуру и обслуживать систему фильтрации воздуха и механизм газораспределения.

По способу воспламенения рабочей смеси различают двигатели с принудительным воспламенением и с воспламенением от сжатия.

В двигателях с принудительным воспламенением рабочая смесь воспламеняется от электрической искры, которая образуется тогда, когда поршень приближается к верхней мертвой точке (в.м.т.) в такте сжатия. К этому моменту в камере сжатия находится топливовоздушная смесь, сжатая до 0,9… 1,5 МПа и нагретая до 280…480°С.

Жидкое топливо может сгорать только в газообразном состоянии. Поэтому необходимо, чтобы карбюратор обеспечивал возможно более тонкое распыливание топлива. Чем тоньше распыливание, тем больше общая поверхность частичек топлива, тем за более короткий промежуток времени оно испаряется. При возникновении искры воспламеняется только та часть смеси, которая находится у электродов искровой свечи зажигания. В этой зоне температура достигает 10 000° С, и образовавшееся пламя распространяется со скоростью 30…50 м/с по всему объему камеры сгорания. Продолжительность процесса сгорания составляет 30…40° угла поворота коленчатого вала. Угол в градусах поворота коленчатого вала от момента образования искры в свече до в.м.т. называется углом опережения зажигания ф3. Оптимальное значение величины угла ф3 зависит от конструкции двигателя, режима работы, условий эксплуатации двигателя и качества топлива.

Читайте также:  Стандартные размеры бумаги определены не случайным способом

Источник

Классификация двигателей внутреннего сгорания двс

Двигатели внутреннего сгорания классифицируют по ряду признаков:

  • по способу осуществления рабочего цикла: двух- и четырехтактные, с наддувом и без него
  • по способу воспламенения топлива: с принудительным зажиганием (искровым или факельным) топливовоздушной смеси, образованной в карбюраторе (карбюраторные двигатели), с воспламенением от сжатия (дизели)
  • по способу смесеобразования: внешним и внутренним смесеобразованием
  • по способу охлаждения: с жидкостным и воздушным охлаждением
  • по расположению цилиндров: однорядные с вертикальным, горизонтальным и наклонным расположением цилиндров, двухрядные (V-образные с различным углом развала цилиндровых блоков), многорядные (с числом цилиндровых блоков три и более)
  • по назначению: стационарные, транспортные (судовые тепловозные, тракторные, автомобильные, авиационные)

На автомобильном транспорте широко применяются карбюраторные двигатели и дизели, работающие по четырехтактному циклу. Реже используются двухтактные двигатели. Наибольшее число моделей имеют однорядное расположение цилиндров с числом цилиндров два — шесть. На большинстве грузовых автомобилей и автобусов установлены V-образные двигатели.

Условия эксплуатации транспортных двигателей характеризуются частой сменой нагрузочных и скоростных режимов работы, значительным диапазоном изменения температуры и давления атмосферного воздуха, его загрязнением.

Технико-экономическими требованиями предусматривается значительное повышение эффективности ДВС с одновременным снижением их металлоемкости и улучшением технологичности конструкции.

Двигатели внутреннего сгорания (ДВС) — наиболее распростра­ненный тип тепловых двигателей, в которых процессы получения тепловой энергии и преобразования ее в механическую работу про­странственно совмещены. Достигается это совмещение благодаря тому, что получение теплоты от сжигания топлива осуществляется в полостях с ограниченным объемом, в результате чего расширяю­щиеся продукты сгорания создают избыточное давление. Такое давление реализуется в виде механической работы, затрачиваемой на перемещение поршней, турбинных лопаток или вытекающей струи газа. В соответствии с типом элемента, перемещаемого дав­лением газа, различают поршневые, турбинные и реактивные дви­гатели.

Благодаря компактности, высокой экономичности и надежнос­ти поршневые ДВС получили наиболее широкое применение в раз­личных отраслях промышленности, строительства и пр. Класси­фикация поршневых ДВС показана на рис. 1.

Процесс преобразования тепловой энергии в механическую ра­боту поршневыми двигателями осуществляется циклически.

Рабочим циклом называют совокупность последовательно про­текающих в цилиндре двигателя термодинамических процессов, в результате совершения которых происходит однократное преобра­зование тепловой энергии, выделенной при сжигании порции топ­лива в цилиндре двигателя, в механическую работу по перемеще­нию поршня. Рабочий цикл состоит из следующих процессов: за­полнения цилиндра воздухом или приготовленной в карбюраторе горючей смесью, сжатия воздуха или горючей смеси, подачи и распыливания топлива в дизелях (смесеобразование), воспламенения, сгорания и тепловыделения, расширения продуктов сгорания и вы­пуска отработавших газов.

Рис. 1. Общая классификация двигателей внутреннего сгорания.

Поршень в цилиндре двигателя совершает возвратно-поступа­тельные движения между определенными (фиксированными) по­ложениями, которые называются соответственно внутренней и наружной мертвыми точками (ВМТ и НМТ). Перемещение поршня между мертвыми точками в одном направлении называют ходом поршня, а часть цикла, совершаемую при движении поршня между мертвыми точками, — тактом. Название такта дается по основному процессу, протекающему при ходе поршня. При перемещении поршня объем внутренней полости цилиндра меняется.

Характерными объемами при этом принимаются следующие:

— объем внутренней полости цилиндра при положении поршня в ВМТ, называемый объемом пространства сжатия и обозначаемый Vc;

— объем внутренней полости цилиндра при положении поршня в НМТ, называемый полным объемом цилиндра и обозначаемый Vt;

— объем, описываемый поршнем между мертвыми точками, кото­рый называется рабочими объемом цилиндра и обозначается Vs.

Отношение полного объема цилиндра к объему пространства сжатия называют степенью сжатия, ее обозначают е и находят по формуле

(1)

Степень сжатия показывает, во сколько раз уменьшается объем цилиндра над поршнем, т. е. сжимается заряд в цилиндре при перемещении поршня из НМТ в ВМТ.

Рабочий цикл в ДВС может совершаться за два или четыре хода поршня. В соответствии с этим двигатели называют двух­тактными и четырехтактными.

В зависимости от способа приготовления горючей смеси, полу­чаемой при смешивании топлива с воздухом, различают двигатели с внутренним смесеобразованием — дизельные и внешним — кар­бюраторные двигатели.

По способу воспламенения рабочей смеси, состоящей из топлива и воздуха, ДВС делят на основные группы: с принудительным воспламенением от постороннего источника (двигатели карбюра­торные и газовые); с воспламенением от сжатия (дизели).

Карбюраторные двигатели работают на легком жидком топли­ве (бензине), дизели — на тяжелом жидком топливе (дизельном топливе и других фракциях нефти).

В карбюраторных двигателях горючая смесь образуется вне ци­линдра. В цилиндры поступает готовая смесь (пары бензина с воз­духом), которая во время такта сжатия сжимается в 6-9 раз и затем поджигается электрической искрой.

Дизели работают по иному принципу, чем карбюраторный дви­гатель: в цилиндры поступает не горючая смесь, а чистый воздух, который сжимается в 12-20 раз. При таком сжатии давление в камере сжатия повышается, а сам воздух при этом нагревается. В сжатый и нагретый воздух через специальную форсунку впрыс­кивается дизельное топливо, которое распыляется на мельчайшие капельки и частично испаряется, образуя с воздухом горючую смесь. Эта смесь воспламеняется от нагретого при сжатии воздуха без какого-либо постороннего зажигания и сгорает.

Читайте также:  Посадка картофеля необычными способами

Количественные соотношения топлива и воздуха (топливо и воздух образуют горючую смесь) определяются окислительно-вос­становительными реакциями, протекающими между химическими элементами топлива и кислородом воздуха. В большем количестве воздуха можно сжечь большее количество топлива и, следова­тельно, получить большее количество теплоты и механической ра­боты, поэтому в дизельных двигателях для повышения мощности при неизменных геометрических параметрах цилиндров может ис­пользоваться наддув, т. е. подача воздуха под давлением.

Поршневой ДВС состоит из группы неподвижных и подвижных узлов и ряда обслуживающих систем. Принципиальные схемы од­ноцилиндрового четырехтактного дизеля с наддувом и двухтактного дизеля показаны на рис. 2, 3 и 4.

К основным неподвижным узлам относятся фундаментная рама с подшипниками коленчатого вала, на которую устанавливаются станина и втулки цилиндров. Сверху цилиндры закрываются крыш­ками. Двигатели с помощью лап монтируются на подмоторной раме 13 (см. рис. 2, а). Втулки цилиндров устанавливаются, как правило, в едином блоке, называемом блоком цилиндров 5, и закрывается единой для всего ряда цилиндров крышкой, которую называют головкой блока цилиндров 11. К главным подвижным деталям ДВС относятся поршень 7, шатун 3 и коленчатый вал 2.

Рис. 2. Двигатель внутреннего сго­рания (дизель):

а — принципиальная схема двигате­ля:

1 — нижний картер (поддон); 2 — коленчатый вал; 3 — шатун; 4 — верхний картер; 5 — блок цилиндров; 6 — нагнетатель (наддувочный аг­регат); 7 — поршень; 8 — впускной клапан; 9 -форсунка; 10 — выпускной клапан; 11 -голов­ка блока цилиндров; 12 — топливный насос высокого давления; 13 — подмоторная рама;

б — индикаторная диаграмма Р — V; в — диаграмма фаз газораспределения:

φ — угол опережения открытия впускного кла­пана; φз — угол запаздывания закрытия впуск­ного клапана; φв — угол опережения открытия выпускного клапана; φк — угол запаздывания закрытия выпускного клапана; φт — угол опе­режения впрыска топлива; φ +φк — угол пере­крытия клапанов;

г — схема работы четырехтактного дизеля

Рис. 3. Схема работы двухтактного дизеля со встречно-движущимися поршнями и прямоточно-щелевой продувкой:

1,6 — верхний и нижний поршни; 2 — продувочные окна; 3 — форсунки; 4 — камера сгорания; 5 — выхлопные окна

Рис. 4. Двухтактный дизель с П-образной поперечной продув­кой: а — схема работы двухтактного дизеля; б — диаграмма фаз газораспределения; в — индикаторная диаграмма: zут — рас­ширение; тп — свободный выпуск; паа’ — продувка; а’а» — на­полнение; а»с — cжатие; czy — горение; х — начало впрыска топлива; у -окончание подачи топлива в камеру сгорания

Каждый ДВС имеет следующие системы:

— систему газообмена, управляющую органами наполнения цилиндров свежим зарядом воздуха и очистки его от отработавших газов;

— топливную систему, служащую для подачи и подготовки топлива к сгоранию в цилиндре;

Современные ДВС оснащаются также дополнительными системами и устройствами, которые улучшают мощностные и другие показатели. К ним относят системы наддува, предпускового подо­грева и автоматики, шумо- и виброгасящие устройства, гасители крутильных колебаний на коленчатом валу и т. п.

К основным параметрам дизелей относят номинальную мощ­ность, число цилиндров, тактность, диаметр цилиндра, ход поршня, степень сжатия, массогабаритные размеры и др.

Рассмотрим принцип работы четырехтактного ди­зеля с наддувом (см. рис. 2, г), у которого один рабочий цикл совершается за четыре хода (такта) поршня, соответствующих двум оборотам коленчатого вала.

Первый такт — такт впуска свежего воздуха — происходит при перемещении поршня от ВМТ к НМТ. Впускной клапан 8 открыт, а выпускной 10 — закрыт. С началом движения поршня от ВМТ к НМТ объем рабочего пространства цилиндра 5 увеличи­вается, а давление в нем уменьшается и становится меньше атмос­ферного в дизелях без наддува (нагнетатель 6 отсутствует).

При наличии наддува воздух поступает в цилиндр под давлением, со­здаваемым компрессором (наддувочным агрегатом). При отсут­ствии наддува свежий заряд воздуха поступает в цилиндр за счет разрежения. Для достижения максимального наполнения цилинд­ра впускной клапан открывается несколько раньше, в точке г с определенным углом опережения, равным 15-35° угла поворота коленчатого вала до ВМТ, и закрывается в точке а с некоторым углом запаздывания φз, равным 10-30° поворота вала после НМТ (см. рис. 2, в).

Второй такт — такт сжатия — начинается при обратном ходе поршня НМТ к ВМТ при закрытых клапанах. В цилиндре образуется замкнутое пространство, объем которого при движении к ВМТ уменьшается. За счет уменьшения объема происходит сжа­тие свежего заряда воздуха, в результате чего повышаются его давление до 3-4 МПа и температура — до 600-700 °С, которая становится достаточной для самовоспламенения впрыскиваемого топлива.

При подходе поршня к ВМТ в цилиндр впрыскивается мелко распыленное топливо с некоторым опережением φт, равным 10-30° угла поворота коленчатого вала до ВМТ, для образования однород­ной смеси и ее воспламенения вблизи ВМТ.

Третий такт — такт расширения, при котором топливо сгорает и происходит резкое повышение давления и температуры рабочего тела. Максимальное давление при сгорании топлива у малооборот­ных дизелей 5-7 МПа, у средне- и высокооборотных 6-12 МПа, у дизелей с наддувом 10-15 МПа. Температура газа в конце сго­рания топлива тем выше, чем больше давление, и колеблется в пределах 1600—2000 °С.

Высокое давление при расширении рабочего тела вызывает дви­жения поршня от ВМТ к НМТ, в результате чего совершается полезная работа.

Читайте также:  Гомолитический способ разрыва ковалентной связи

Четвертый такт — такт выпуска, при котором в конце рабоче­го хода до прихода поршня в НМТ открывается выпускной кла­пан 10 и начинается процесс свободного выпуска газов из цилинд­ра в выпускной трубопровод. Свободный выпуск осуществляется за счет перепада давления в цилиндре и в выпускной системе. Температура отработавших газов при этом 350-500 °С и давле­ние 0,3-0,4 МПа.

Опережение открытия выпускного клапана 10 в точке 6 соот­ветствует φв = 20-50° угла поворота коленчатого вала до НМТ. Поршень, двигаясь вверх, выталкивает отработавшие газы из ци­линдра, освобождая цилиндр для новой порции свежего воздуха.

Закрывается выхлопной клапан в точке r при φк = 10-30° за ВМТ. Сумма двух углов φ + φк называется углом перекрытия клапанов. При дальнейшем движении поршня вниз начинается новый рабочий цикл, такты которого повторяются в перечислен­ной ранее последовательности.

Рассмотрим принцип работы двухтактного дизеля (см. рис. 3) со встречно-движущимися поршнями и прямоточно-щелевой продувкой.

В цилиндре дизеля имеется по два поршня, движущихся в про­тивоположных направлениях и образующих при этом в средней части цилиндровой гильзы (между днищами поршней) одну об­щую камеру сгорания. Подвод продувочного воздуха к цилиндрам и выпуск отработанных газов осуществляются через окна в ци­линдровых гильзах, которые открываются и закрываются поршня­ми. Верхние поршни управляют впуском воздуха через продувочные окна, а нижние — выпуском отработанных газов через выпуск­ные (выхлопные) окна.

Рабочий цикл в двухтактном дизеле совершается за два такта, т. е. за один оборот коленчатого вала, и осуществляется следую­щим образом.

Первый такт начинается при движении поршней навстречу друг другу (см. рис. 3) от их НМТ к ВМТ. Сначала нижний поршень перекрывает выпускные окна, а затем верхний поршень — продувочные окна. Указанная очередность закрытия окон объяс­няется тем, что нижний коленчатый вал по углу поворота опере­жает верхний на 12°. До закрытия выпускных окон воздух, посту­пающий под давлением, вытесняет отработавшие газы из цилинд­ра. Когда окна закрываются, воздух через открытые впускные окна продолжает поступать в цилиндр.

Более позднее закрытие впуск­ных окон по сравнению с выпускными способствует дозаправке цилиндра свежим воздухом до давления, почти равного давлению продувочного воздуха, т. е. происходит так называемый наддув. Это позволяет увеличивать весовой заряд воздуха в цилиндре, а, следовательно, сжечь большее количество топлива и получить большую мощность.

Как только окна закрылись, начинается сжатие воздуха в ци­линдре. Когда поршни приблизятся к ВМТ, в камеру сгорания впрыскивается топливо, которое в среде нагретого при сжатии до высокой температуры воздуха воспламеняется.

В начале второго такта происходит сгорание топлива, что при­водит к повышению давления газов в цилиндре до 8-9 МПа. Под действием этого давления поршни расходятся от ВМТ, газы расши­ряются и их давление понижается. В конце такта расширения ниж­ний поршень открывает выпускные окна и начинается выхлоп от­работавших газов. Немного позднее, когда верхний поршень откро­ет впускные окна, начинается процесс продувки цилиндра свежим воздухом. Этот процесс продолжается до момента закрытия выпуск­ных окон в начале первого такта, а далее цикл повторяется.

Аналогично совершается рабочий цикл двухтактного дизеля с П-образной поперечной продувкой (см. рис. 4).

Не нашли то, что искали? Воспользуйтесь поиском:

Сколько марок автомобилей колесит по дорогам нашей матушки Земли? Уже трудно посчитать. А сколько двигателей понаизобретали? Это уже за пределами современной статистики. Поэтому нужна классификация двигателей внутреннего сгорания, чтобы хотя бы иметь представление о различии их конструкций и принципиальных особенностей.

Так уж случилось, что в современном автомобилестроении победу одержали энергетические установки, содержащие в себе принцип внутреннего сгорания, преобразующие тепловую энергию сгоревшего топлива в цилиндре, в механическую работу. Вот мы и рассмотрим эти самые ДВС.

Классификация двигателей

Классификация двигателей будет понятна, если мы её рассмотрим на основе их признаков: по их назначению, конструктивным особенностям, физическим процессам и другим характерным особенностям.

По топливу

Тактовый рабочий цикл.

По типу смесеобразования

  • внешнее смесеобразование (карбюраторные или газовые двигатели).
    Нужно обратить внимание на то, что карбюраторные двигатели потребляют легкое жидкое топлив (бензин) и в камеру сгорания поступает уже готовая смесь паров топлива с воздухом;
  • внутреннее смесеобразование (бензиновые и дизельные с непосредственным впрыском топлива)
    дизели работают на жидком тяжелом топливе (дизельное). Оно поступает через форсунки в камеру сгорания в тот момент, когда воздух максимально сжат поршнем, находится в верхней мертвой точке (ВМТ), и соответственно перегрет до высокой температуры, достаточной для поджига смеси;

По способу воспламенения смеси.

  • с непосредственным поджиганием смеси в цилиндре в нужный момент, будь то карбюраторные или двигатели с впрыском бензина.;
  • с воспламенением от сжатия в цилиндре (дизель).

По конструкции расположения и числа цилиндров.

  • однорядные, двухрядные (V-образные, оппозитные);
  • n — цилиндровые. Количество цилиндров в двигателе автомобилей может быть любым, но самые распространенные в автомобилестроении — четырехцилиндровые двигатели.

По системам охлаждения двигателя

  • воздушное (с естественным атмосферным обдувом и принудительным);
  • жидкостное (специальная система двигателя, имеющая по всему двигателю каналы, по которым принудительно перекачивается охлаждающая жидкость, охлаждая её с помощью радиатора). На блоге подробно описана работа охлаждающей системы.

Это и есть краткое пояснение по теме классификация ДВС. По каждому пункту на блоге имеется подробная статья.

Читайте, совершенствуйтесь, делитесь полученными знаниями в сетях.

Источник

Оцените статью
Разные способы