- Системы уравнений
- Как решить систему уравнений
- Способ подстановки или «железобетонный» метод
- Способ сложения
- Пример решения системы уравнения способом подстановки
- Пример решения системы уравнения способом сложения
- Решение системы линейных уравнений методом сложения
- Алгоритм решения системы линейных уравнений методом сложения
- Примеры
- Способ сложения
- Примеры решения систем линейных уравнений способом сложения
Системы уравнений
Прежде чем перейти к разбору как решать системы уравнений, давайте разберёмся, что называют системой уравнений с двумя неизвестными.
Системой уравнений называют два уравнения с двумя неизвестными (чаще всего неизвестные в них называют « x » и « y »), которые объединены в общую систему фигурной скобкой.
Например, система уравнений может быть задана следующим образом.
x + 5y = 7 |
3x − 2y = 4 |
Чтобы решить систему уравнений, нужно найти и « x », и « y ».
Как решить систему уравнений
Существуют два основных способа решения систем уравнений. Рассмотрим оба способа решения.
Способ подстановки
или
«железобетонный» метод
Первый способ решения системы уравнений называют способом подстановки или «железобетонным».
Название «железобетонный» метод получил из-за того, что с помощью этого метода практически всегда можно решить систему уравнений. Другими словами, если у вас не получается решить систему уравнений, всегда пробуйте решить её методом подстановки.
Разберем способ подстановки на примере.
x + 5y = 7 |
3x − 2y = 4 |
Выразим из первого уравнения « x + 5y = 7 » неизвестное « x ».
Чтобы выразить неизвестное, нужно выполнить два условия:
- перенести неизвестное, которое хотим выразить, в левую часть уравнения;
- разделить и левую и правую часть уравнения на нужное число так, чтобы коэффициент при неизвестном стал равным единице.
Перенесём в первом уравнении « x + 5 y = 7 » всё что содержит « x » в левую часть, а остальное в правую часть по правилу переносу.
При « x » стоит коэффициент равный единице, поэтому дополнительно делить уравнение на число не требуется.
x = 7 − 5y |
3x − 2y = 4 |
Теперь, вместо « x » подставим во второе уравнение полученное выражение
« x = 7 − 5y » из первого уравнения.
x = 7 − 5y |
3(7 − 5y) − 2y = 4 |
Подставив вместо « x » выражение « (7 − 5y) » во второе уравнение, мы получили обычное линейное уравнение с одним неизвестным « y ». Решим его по правилам решения линейных уравнений.
Чтобы каждый раз не писать всю систему уравнений заново, решим полученное уравнение « 3(7 − 5y) − 2y = 4 » отдельно. Вынесем его решение отдельно с помощью обозначения звездочка (*) .
x = 7 − 5y |
3(7 − 5y) − 2y = 4 (*) |
Мы нашли, что « y = 1 ». Вернемся к первому уравнению « x = 7 − 5y » и вместо « y » подставим в него полученное числовое значение. Таким образом можно найти « x ». Запишем в ответ оба полученных значения.
x = 7 − 5y |
y = 1 |
x = 7 − 5 · 1 |
y = 1 |
x = 2 |
y = 1 |
Ответ: x = 2; y = 1
Способ сложения
Рассмотрим другой способ решения системы уравнений. Метод называется способ сложения. Вернемся к нашей системе уравнений еще раз.
x + 5y = 7 |
3x − 2y = 4 |
По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное.
Давайте сейчас сложим уравнения системы и посмотрим, что из этого выйдет.
При сложения уравнений системы левая часть первого уравнения полностью складывается с левой частью второго уравнения, а правая часть полностью складывается с правой частью.
x + 5y = 7 | (x + 5y) + (3x − 2y) = 7 + 4 |
+ => | x + 5y + 3x − 2y = 11 |
3x − 2y = 4 | 4x + 3y = 11 |
При сложении уравнений мы получили уравнение « 4x + 3y = 11 ». По сути, сложение уравнений в исходном виде нам ничего не дало, так как в полученном уравнении мы по прежнему имеем оба неизвестных.
Вернемся снова к исходной системе уравнений.
x + 5y = 7 |
3x − 2y = 4 |
Чтобы при сложении неизвестное « x » взаимноуничтожилось, нужно сделать так, чтобы в первом уравнении при « x » стоял коэффициент « −3 ».
Для этого умножим первое уравнение на « −3 ».
При умножении уравнения на число, на это число умножается каждый член уравнения.
x + 5y = 7 | ·(−3) |
3x − 2y = 4 |
x · (−3) + 5y · (−3) = 7 · (−3) |
3x − 2y = 4 |
−3x −15y = −21 |
3x − 2y = 4 |
Теперь сложим уравнения.
−3x −15y = −21 | (−3x −15y ) + (3x − 2y) = −21 + 4 |
+ => | − 3x − 15y + 3x − 2y = −21 + 4 |
3x − 2y = 4 | −17y = −17 |:(−17) |
y = 1 |
Мы нашли « y = 1 ». Вернемся к первому уравнению и подставим вместо « y » полученное числовое значение и найдем « x ».
x = 7 − 5y |
y = 1 |
x = 7 − 5 · 1 |
y = 1 |
x = 2 |
y = 1 |
Ответ: x = 2; y = 1
Пример решения системы уравнения
способом подстановки
Выразим из первого уравнения « x ».
x = 17 + 3y |
x − 2y = −13 |
Подставим вместо « x » во второе уравнение полученное выражение.
x = 17 + 3y |
(17 + 3y) − 2y = −13 (*) |
Подставим в первое уравнение полученное числовое значение « y = −30 » и найдем « x ».
x = 17 + 3y |
y = −30 |
x = 17 + 3 · (−30) |
y = −30 |
x = 17 −90 |
y = −30 |
x = −73 |
y = −30 |
Ответ: x = −73; y = −30
Пример решения системы уравнения
способом сложения
Рассмотрим систему уравнений.
3(x − y) + 5x = 2(3x − 2) |
4x − 2(x + y) = 4 − 3y |
Раскроем скобки и упростим выражения в обоих уравнениях.
3x − 3y + 5x = 6x − 4 |
4x − 2x − 2y = 4 − 3y |
8x − 3y = 6x − 4 |
2x −2y = 4 − 3y |
8x − 3y − 6x = −4 |
2x −2y + 3y = 4 |
2x − 3y = −4 |
2x + y = 4 |
Мы видим, что в обоих уравнениях есть « 2x ». Наша задача, чтобы при сложении уравнений « 2x » взаимноуничтожились и в полученном уравнении осталось только « y ».
Для этого достаточно умножить первое уравнение на « −1 ».
2x − 3y = −4 | ·(−1) |
2x + y = 4 |
2x · (−1) − 3y · (−1) = −4 · (−1) |
2x + y = 4 |
−2x + 3y = 4 |
2x + y = 4 |
Теперь при сложении уравнений у нас останется только « y » в уравнении.
−2x + 3y = 4 | (−2x + 3y ) + (2x + y) = 4 + 4 |
+ => | − 2x + 3y + 2x + y = 4 + 4 |
2x + y = 4 | 4y = 8 | :4 |
y = 2 |
Подставим в первое уравнение полученное числовое значение « y = 2 » и найдем « x ».
Источник
Решение системы линейных уравнений методом сложения
Алгоритм решения системы линейных уравнений методом сложения
- Умножить обе части одного или обоих уравнений так, чтобы коэффициенты при одной из переменных стали противоположными (или равными) числами.
- Сложить (или отнять) уравнения, чтобы избавиться от одной из переменных.
- Решить второе уравнение относительно выраженной переменной.
- Решить полученное уравнение с одной переменной.
- Найти вторую переменную.
- Записать ответ в виде упорядоченной пары найденных значений переменных.
Умножаем первое уравнение на 2
Отнимаем от первого уравнения второе:
Находим y из первого уравнения:
В последовательной записи:
$$ <\left\< \begin
Примеры
Пример 1. Решите систему уравнений методом сложения:
$ а) <\left\< \begin
$ б) <\left\< \begin
$ в) <\left\< \begin
$ г) <\left\< \begin
Пример 2. Найдите решение системы уравнений:
$$а) <\left\< \begin
$$\Rightarrow <\left\< \begin
$ в) <\left\< \begin
$ г) <\left\< \begin
$$ \Rightarrow <\left\< \begin
Пример 3*. Найдите решение системы уравнений:
Введём новые переменные: $ <\left\< \begin
Перепишем систему и найдём решение для новых переменных:
$$ <\left\< \begin
Источник
Способ сложения
Способ сложения решения систем линейных уравнений изучается в школьном курсе алгебры в 7 классе. Этим способом можно решить любую систему линейных уравнений, но для решения систем других видов он применяется не так часто, как метод подстановки.
Алгоритм решения систем линейных уравнений с двумя переменными способом сложения
1) Умножаем почленно уравнения системы так, чтобы коэффициенты при одной из переменными стали противоположными числами.
2) Складываем почленно левые и правые части уравнений.
3) Решаем получившееся уравнение с одной переменной.
4) Найденное значение переменной подставляем в любое из уравнений и находим значение другой переменной.
Ответ записываем в круглых скобках через точку с запятой в алфавитном порядке: (x; y).
Как определить, на какие числа умножать уравнения?
находим наименьшее общее кратное коэффициентов при каждой из переменных. Выбираем из НОК(a1;a2) и НОК(b1;b2) то число, привести к которому коэффициенты проще. Затем умножаем уравнения почленно.
Например, если выбрали НОК(a1;a2), первое уравнение системы можно умножить на НОК(a1;a2)/a1, а второе — на -НОК(a1;a2)/a2.
В результате коэффициент при x в первом уравнении станет равным НОК(a1;a2), во втором — -НОК(a1;a2). При сложении почленно левой и правой части получившихся уравнений слагаемые с иксом уйдут (поскольку сумма противоположных чисел равна нулю).
Из полученного уравнения с одной переменной найдем значение y.
Подставив вместо y в любое из первоначальных уравнений найденное значение, вычислим x.
В следующий раз рассмотрим конкретные примеры решения систем линейных уравнений методом сложения.
Источник
Примеры решения систем линейных уравнений способом сложения
Рассмотрим конкретные примеры решения систем линейных уравнений способом сложения.
Ищем наибольший общий делитель коэффициентов при каждой из переменных (коэффициенты берем со знаком «+»).
Наименьшее общее кратное коэффициентов при x — НОК(5;2)=10, при y — НОК(3;3)=3.
Проще работать с y, поскольку для получения перед y противоположных чисел достаточно умножить любое из уравнений на -1. Проще умножить на -1 второе уравнение системы (в этом случае после сложения уравнений коэффициент при x — положительное число).
Теперь подставим x=3 в любое из уравнений системы, например, во второе:
Решаем это уравнение:
Ответ записываем в круглых скобках через точку с запятой в алфавитном порядке.
НОК(6; 4)=12, НОК(13; 5)=65. Проще работать с коэффициентами перед x.
Чтобы получить перед иксами противоположные числа, первую систему умножим на -2, вторую — на 3
и сложим почленно левые и правые части уравнений:
Подставляем y= -1 в первое уравнение системы и находим x:
НОК(3; 5)=15, НОК(5; 7)=35. Проще получить противоположные числа перед x.
Для этого умножим первое уравнение системы на 5, второе — на -3:
и сложим почленное левые и правые части полученных уравнений:
Подставляем y=2 в первое уравнение системы и находим x:
Прежде чем применить способ сложения, данную систему следует упростить. Умножим первое уравнение на наименьший общий знаменатель дробей, во втором раскроем скобки:
Получили систему линейных уравнений с двумя переменными. Для решения её способом сложения достаточно умножить второе уравнение на -1 и сложить почленно левые и правые части уравнений:
Подставляем найденное значение b в первое уравнение системы (линейных уравнений):
Систему линейных уравнений с тремя переменными можно решить, сначала исключив одно из неизвестных, а затем — другое.
В данной системе проще всего исключить переменную z.
К первому уравнению прибавим третье, умноженное на -3:
Ко второму уравнению прибавим третье, умноженное на 2:
Получили систему линейных уравнений с двумя переменными:
НОК(8;10)=40, НОК(13; 7)=91. Проще работать с x:
Подставив полученные значение y во второе уравнение системы с двумя переменными, найдём x:
Подставив значения y и x в третье уравнение системы с тремя переменными, найдём z:
Источник