- 10.11. Измерение плотности и объема газов
- Определение плотности газа по результатам измерения давления и температуры датчиками Arduino
- Введение
- Математическая модель определения плотности газа
- Приведение плотности газа к нормальным, стандартным условиям
- Реализация измерительного канала давления и температуры
- Программа Python для фильтрации по каналам температуры и давления, и получение результатов
- Выводы
10.11. Измерение плотности и объема газов
Плотность газа В(рв, г/л) определяют взвешиванием (mв) небольшой стеклянной колбочки известного объема с газом (рис. 274,а) или газового пикнометра (см. рис. 77), применяя формулу
где V- объем колбочки (5 — 20 мл) или пикнометра.
Колбочку взвешивают дважды: сначала вакуумированную, а затем наполненную исследуемым газом. По разности значений 2-х полученных масс узнают массу газа mв, г. При заполнении колбочки газом измеряют его давление , а при взвешивании — температуру окружающей среды, которую принимают за температуру газа в колбочке. Найденные значения р и Т газа дают возможность вычислить плотность газа при нормальных условиях (0 °С; около 0,1 МПа).
Для уменьшения поправки на потерю массы колбочки с газом в воздухе при ее взвешивании в качестве тары на Другом плече коромысла весов располагают запаянную колбочку точно, такого же объема.
Рис. 274. Приборы для определения плотности газа: колбочка (а) и жидкостной (б) и ртутный (в) эффуэиометры
Поверхность этой колбочки обрабатывают (очищают) каждый раз точно так же, как и взвешиваемой с газом.
В процессе вакуумирования колбочку немного нагревают, оставляя подключенной к вакуумной системе в течение нескольких часов, поскольку остатки воздуха и влаги удаляются с трудом. У вакуумированной колбочки может измениться объем из-за сжатия стенок атмосферным давлением. Погрешность определения плотности легких газов от такого сжатия может достигать 1%. В отдельных случаях для газа определяют и относительную плотность dв, т. е. отношение плотности данного газа рв к плотности другого газа, выбранного в качестве стандартного р0, взятого при тех же температуре и давлении:
где Mв и Mо — соответственно молярные массы исследуемого газа В и стандартного, например воздуха или водорода, г/моль.
Для водорода M0 = 2,016 г/моль, поэтому
Из этого соотношения можно определить молярную массу газа, если принять его за идеальный.
Быстрым методом определения плотности газа является метод измерения продолжительности его истечения из малого отверстия под давлением, которая пропорциональна скорости истечения.
время истечения газа В и воздуха соответственно.
Измерение плотности газа этим методом проводят при полоши эффузиометра (рис. 274,6) — широкого цилиндра б высоки около 400 мм, внутри которого находится сосуд 5 с основанием 7, снабженным отверстиями для входа и выхода жидкости. На сосуде 5 нанесены две метки М1 и М2 для отсчета объема газа, время истечения которого наблюдают. Кран 3 служит для впуска газа, а кран 2 — для выпуска через капилляр 1. Термометром 4 контролируют температуру газа.
Определение плотности газа по скорости его истечения выполняют следующим образом. Наполняют цилиндр б жидкостью, в которой газ почти нерастворим, чтобы был заполнен и сосуд 5 выше метки М2. Затем через кран 3 жидкость выдавливают из сосуда 5 исследуемым газом ниже метки М1, причем вся жидкость должна остаться в цилиндре. После этого, закрыв кран 3, открывают кран 2 и дают выйти излишку газа через капилляр 1. Как только жидкость достигнет метки М1 включают секундомер. Жидкость, вытесняя газ, постепенно поднимается до метки М2. В момент касания мениска жидкости метки М2 секундомер выключают. Опыт повторяют 2-3 раза. Аналогичные операции проводят и с воздухом, тщательно промыв им сосуд 5 от остатков исследуемого газа. Разные наблюдения длительности истечения газа не должны различаться более чем на 0,2 — 0,3 с.
Если для исследуемого газа нельзя подобрать жидкость, в которой он был бы малорастворим, применяют ртутный эффузионетр (рис. 274,в). Он состоит из стеклянного сосуда 4 с трехходовым краном 1 и уравнительного сосуда 5, наполненного ртутью. Сосуд 4 находится в стеклянном сосуде 3, выполняющем функции термостата. Через кран 1 в сосуд 4 вводят газ, вытесняя ртуть ниже метки М1. Выпускают исследуемый газ или воздух через капилляр 2, подняв уравнительный сосуд 5. Более чувствительными приборами для определения плотности газов являются газовый ареометр Штока (рис. 275,а) и газовые весы
Шток Альфред (1876-1946) — немецкий химик-неорганик и аналитик.
В ареометре Штока один конец кварцевой трубки раздут в тонкостенный шар 1 диаметром 30 — 35 мм, наполненный воздухом, а другой оттянут в волосок 7. Внутрь трубки плотно сдавлен небольшой железный стержень 3.
Рис. 275. Ареометр Штока (а) и схема установки (б)
Острием Отрубка с шаром опирается на кварцевую или агатовую опору. Трубка с шаром помешены в кварцевый сосуд 5 с пришлифованной круглой пробкой. Вне сосуда расположен соленоид 6 с железным сердечником. При помощи тока различной силы, протекающего через соленоид, выравнивают положение коромысла с шаром так, чтобы волосок 7 указывал точно на индикатор нуля 8. За положением волоска наблюдают при помощи зрительной трубы или микроскопа.
Ареометр Штока приваривают к трубке 2 для устранения каких-либо вибраций.
Шар с трубкой находятся в равновесии при данной плотности окружающего их газа. Если в сосуде 5 один газ заменить на другой при постоянном давлении, то равновесие нарушится из-за изменения плотности газа. Для его восстановления необходимо либо притянуть стержень 3 электромагнитом 6 вниз при понижении плотности газа, либо дать ему подняться вверх при увеличении плотности. Сила тока, протекающего через соленоид, при достижении равновесия прямо пропорциональна изменению плотности.
Прибор градуируют по газам известной плотности. Точность ареометра Штока 0,01 — 0,1%, чувствительность порядка ДО»7 г, диапазон измерений от 0 до 4 г/л.
Установка с ареометром Штока. Ареометр Штока / (рис-275,6) присоединяют к вакуумной системе так, что он висит на трубке 2 как на пружине. Колено 3 трубки 2 погружено в сосуд Дьюара 4 с охлаждающей смесью , позволяющей поддерживать температуру не выше -80 o C для конденсации пара ртути, если для создания вакуума в ареометре использует диффузионный ртутный насос. Кран 5 соединяет ареометр с колбой, содержащей иесследуемый газ. Ловушка защищает диффузионный насос от воздействием исследуемого газа, а приспособление 7 служит для точной регулировки давления . Вся система через трубку соединена с диффузионным насосом.
Объем газа измеряют при помощи калиброванных газовых береток (см. рис. 84) с термостатируемой водяной рубашкой. Во избежание поправок на капиллярные явления газовую 3 и компенсационную 5 бюретки подбирают одинакового диаметра и располагают в термостатируемой рубашке 4 рядом (рис. 276). В качестве запирающих жидкостей применяют ртуть, глицерин и другие жидкости, плохо растворяющие исследуемый газ.
Оперируют этим прибором следующим образом. Сначала заполняют бюретки жидкостью до уровня выше крана 2, поднимая сосуд б. Затем газовую бюретку соединяют с источником газа и вводят его, опуская сосуд б, после чего кран 2 закрывают. Для уравнивания давления газа, находящегося в бюретке 3, с атмосферным давлением сосуд б подносят вплотную к бюретке и устанавливают на такой высоте, чтобы мениски ртути в компенсационной 5 и газовой 3 бюретках были на одном уровне. Поскольку компенсационная бюретка сообщается с атмосферой (ее верхний конец открыт), при таком положении менисков давление газа в газовой бюретке будет равно атмосферному.
Одновременно измеряют атмосферное давление по барометру и температуру воды в рубашке 4 при помощи термометра 7.
Найденный объем газа приводят к нормальным условиям (0 °С; 0,1 МПа), используя уравнение для идеального газа:
V0 и V — приведенный к нормальным условиям объем (л) газа и измерен-иЬ1й объем газа при температуре t (°С) соответственно; р — атмосферное давление в момент измерения объема газа, торр.
Если газ содержит пары воды или находился перед измерением объема в сосуде над водой или водным раствором, то его Oбъем приводят к нормальным условиям с учетом давления пара воды p1 при температуре опыта (см. табл. 37):
Уравнения применяют в том случае, если атмосферное давление при измерении объема газа было сравнительно близко к 760 торр. Давление реального газа всегда меньше, чем у идеального, из-за взаимодействия молекул. Поэтому в найденное значение объема газа вводят поправку на неидеальность газа, взятую из специальных справочников.
Источник
Определение плотности газа по результатам измерения давления и температуры датчиками Arduino
Введение
Задача измерения параметров газовой смеси широко распространена в промышленности и торговле. Проблема получения достоверной информации при измерении параметров состояния газовой среды и её характеристик с помощью технических средств разрешается принятыми в стандартах методиками выполнения измерений (МВИ), например, при измерении расхода и количества газов с помощью стандартных сужающих устройств [1], или с помощью турбинных, ротационных и вихревых расходомеров и счётчиков [2].
Периодический газовый анализ позволяет установить соответствие между реальной анализируемой смесью и её моделью, по которой в МВИ учитываются физико-химические параметры газа: состав газовой смеси и плотность газа при стандартных условиях.
Также в МВИ учитываются теплофизические характеристики газа: плотность при рабочих условиях (давление и температура газа, при которых выполняют измерение его расхода или объёма), вязкость, фактор и коэффициент сжимаемости.
К измеряемым в реальном режиме времени параметрам состояния газа относятся: давление (перепад давлений), температура, плотность. Для измерения этих параметров применяются соответственно средства измерительной техники: манометры (дифманометры), термометры, плотномеры. Измерение плотности газовой среды допускается измерять прямым или косвенным методами измерения. Результаты как прямых, так и косвенных методов измерения зависят от погрешности средств измерения и методической погрешности. В рабочих условиях, сигналы измерительной информации могут быть подвержены влиянию значительного шума, среднее квадратичное отклонение которого может превышать инструментальную погрешность. В этом случае, актуальной задачей является эффективная фильтрация сигналов измерительной информации.
В данной статье рассматривается методика косвенного измерения плотности газа при рабочих и стандартных условиях c применением фильтра Калмана.
Математическая модель определения плотности газа
Обратимся к классике и вспомним уравнение состояния идеального газа [3]. Имеем:
1. Уравнение Менделеева-Клапейрона:
(1),
— давление газа;
— молярный объём;
R — универсальная газовая постоянная,
;
T — абсолютная температура, T=273.16 К.
2. Два измеряемых параметра:
p – давление газа, Па
t – температура газа, °С.
Известно, что молярный объём зависит от объёма газа V и количества молей газа
в этом объёме:
(2)
Также известно, что
(3),
где: m – масса газа, M – молярная масса газа.
Учитывая (2) и (3) перепишем (1) в виде:
(4).
Как известно, плотность вещества
равна:
(5).
Из (4) и (5) выведем уравнение для плотности газа
:
(6)
и введём обозначение параметра
, который зависит от молярной массы газовой смеси:
(7).
Если состав газовой смеси не меняется, то параметр k является константой.
Итак, для расчёта плотности газа необходимо рассчитать молярную массу газовой смеси.
Молярную массу смеси веществ определяем, как среднее арифметическое взвешенное молярной массы массовых долей, входящих в смесь индивидуальных веществ.
Примем известным состав веществ в газовой смеси – в воздухе, который состоит из:
- 23 % по весу из молекул кислорода
- 76 % по весу из молекул азота
- 1 % по весу из атомов аргона
Молярные массы этих веществ воздуха будут соответственно равны:
, г/моль.
Вычисляем молярную массу воздуха, как среднее арифметическое взвешенное:
Теперь, зная значение константы
, мы можем вычислить плотность воздуха по формуле (7) с учетом измеряемых значений
и t:
Приведение плотности газа к нормальным, стандартным условиям
Практически, измерения свойств газов проводят в различных физических условиях, и для обеспечения сопоставления между различными наборами данных должны быть установлены стандартные наборы условий [4].
Стандартные условия для температуры и давления – это установленные стандартом физические условия, с которыми соотносят свойства веществ, зависящие от этих условий.
Различные организации устанавливают свои стандартные условия, например: Международный союз чистой и прикладной химии (IUPAC), установил в области химии определение стандартной температуры и давления (STP): температура 0 °C (273.15 K), абсолютное давление 1 бар ( Па); Национальный институт стандартов и технологий (NIST) устанавливает температуру 20 °C (293,15 K) и абсолютное давление 1 атм (101.325 кПа), и этот стандарт называют нормальной температурой и давлением (NTP); Международная организация по стандартизации (ISO) устанавливает стандартные условия для природного газа (ISO 13443: 1996, подтверждённый в 2013 году): температура 15.00 °С и абсолютное давление 101.325 кПа.
Поэтому, в промышленности и торговле необходимо указывать стандартные условия для температуры и давления, относительно которых и проводить необходимые расчёты.
Плотность воздуха мы рассчитываем по уравнению (8) в рабочих условиях температуры и давления. В соответствии с (6) запишем уравнение для плотности воздуха в стандартных условиях: температура и абсолютное давление
:
(9).
Делаем расчёт плотности воздуха, приведенной к стандартным условиям. Разделим уравнение (9) на уравнение (6) и запишем это отношение для :
(10).
Подобным образом, получим уравнение для расчёта плотности воздуха, приведенной к нормальным условиям: температура и абсолютное давление
:
(11).
В уравнениях (10) и (11) используем значения параметров воздуха , T и P из уравнения (8), полученные в рабочих условиях.
Реализация измерительного канала давления и температуры
Для решения многих задач получения информации, в зависимости от их сложности, удобно создавать прототип будущей системы на базе одной из микроконтроллерных платформ типа Arduino, Nucleo, Teensy, и др.
Что может быть проще? Давайте сделаем микроконтроллерную платформу для решения конкретной задачи – создание системы измерения давления и температуры, затрачивая меньше, возможно, средств, и используя все преимущества разработки программного обеспечения в среде Arduino Software (IDE).
Для этого, на аппаратном уровне, нам понадобятся компоненты:
- Arduino (Uno, …) – используем как программатор;
- микроконтроллер ATmega328P-PU – микроконтроллер будущей платформы;
- кварцевый резонатор на 16 МГц и пара керамических конденсаторов на 12-22 пФ каждый (по рекомендациям фирмы-изготовителя);
- тактовая кнопка на перезагрузку микроконтроллера и подтягивающий плюс питания к выводу RESET микроконтроллера резистор на 1 кОм;
- BMP180 — измерительный преобразователь температуры и давления с интерфейсом I2C;
- преобразователь интерфейсов TTL/USB;
- расходные материалы – провода, припой, монтажная плата, и др.
Принципиальная схема платформы, с учетом необходимых интерфейсов: стандартного последовательного интерфейса, I2C, и ничего более, представлена на рис. 1.
Рис. 1 — Принципиальная схема микроконтроллерной платформы для реализации системы измерения давления и температуры
Теперь рассмотрим этапы осуществления нашей задачи.
1. Прежде, нам нужен программатор. Подключаем Arduino (Uno, …) к компьютеру. В среде Arduno Software из меню по пути Файл->Примеры->11. ArdunoISP добираемся до программы программатора ArduinoISP, которую зашиваем в Arduino. Предварительно из меню Инструменты выбираем соответственно Плату, Процессор, Загрузчик, Порт. После Загрузки программы ArduinoISP в плату, наша Arduino превращается в программатор и готова к использованию по назначению. Для этого в среде Arduno Software в меню Инструменты выбираем пункт Программатор: “Arduino as ISP”.
2. Подключаем по интерфейсу SPI ведомый микроконтроллер ATmega328P к ведущему программатору Arduino (Uno, …), рис. 2. Следует заметить, что предварительно биты регистра Low Fuse Byte микроконтроллера ATmega328P были установлены в незапрограммированное состояние. Переходим в среду Arduno Software и из меню Инструменты выбираем пункт Записать Загрузчик. Прошиваем микроконтроллер ATmega328P.
Рис. 2 – Схема подключения микроконтроллера к программатору
3. После успешной прошивки, микроконтроллер ATmega328P готов к установке на разработанную микроконтроллерную платформу (рис. 3), которую программируем также, как и полноценную Arduino (Uno, …). Программа опроса измерительного преобразователя давления и температуры представлена на листинге 1.
Рис. 3 Система измерения давления и температуры
Программа Python для фильтрации по каналам температуры и давления, и получение результатов
Программа Python методики определения плотности газа по результатам измерений давления и температуры представлена на листинге 2. Информация из измерительной системы выводится в реальном режиме времени.
Результаты расчёта представлены листингом и рис. 4, 5, 6.
Рис. 4 – результаты измерения (красный) и фильтрации (синий) давления
Рис. 5 – результаты измерения (красный) и фильтрации (синий) температуры
Рис. 6 – результаты расчёта плотности воздуха, приведенной к стандартным условиям (температура 273.15 К; абсолютное давление 101.325 кПа)
Выводы
Разработана методика определения плотности газа по результатам измерения давления и температуры с применением датчиков Arduino и программных средств Python.
Источник