Измерение количества информации алфавитный способ

Измерение количества информации алфавитный способ

Вокруг нас везде и всюду происходят информационные обмены. Инфор­мацией обмениваются между собой люди, животные, технические устройства, органы человека или животного и т.д. во всех этих случаях передача информации происходит в виде последовательностей различных сигналов. В вычислительной технике такие сигналы кодируют определенные смыс ловые символы, т.е. такие сигналы кодируют последовательности знаков — букв, цифр, кодов цвета точек и т.д. С этой точки зрения рассматривается другой подход к измерению информации — алфавитный.

Каким образом в этом случае можно найти количество информации?

канал передачи информации

Формула связывает между собой количество воз­можных информационных сообщений N и количество ин­формации I, которое несет полученное сообщение. Тогда в рассматриваемой ситуации N — это количество знаков в ал­фавите знаковой системы, а I — количество информации, которое несет каждый знак: N = 2 I .
С помощью этой формулы можно, например, определить количество информации, которое несет знак в двоичной зна­ковой системе:

Таким образом, буква русского алфавита несет 5 битов информации (при алфавитном подходе к измерению коли­чества информации).
Количество информации, которое несет знак, зависит от вероятности его получения. Если получатель зара­нее точно знает, какой знак придет, то полученное ко­личество информации будет равно 0. Наоборот, чем менее вероятно получение знака, тем больше его ин­формационная емкость.
В русской письменной речи частота использования букв в тексте различна, так в среднем на 1000 знаков осмысленного текста приходится 200 букв «а» и в сто раз меньшее количество буквы «ф» (всего 2). Таким образом, с точки зрения теории информации, инфор­мационная емкость знаков русского алфавита различ­на (у буквы «а» она наименьшая, а у буквы «ф» — наибольшая).
Количество информации в сообщении. Сообщение состо­ит из последовательности знаков, каждый из которых несет определенное количество информации.
Если знаки несут одинаковое количество информации, то количество информации Iс в сообщении можно подсчитать, умножив количество информации I3, которое несет один знак, на длину кода (количество знаков в сообщении) К:

Информация и информационные процессы

Так, каждая цифра двоичного компьютерного кода несет информацию в 1 бит. Следовательно, две цифры несут ин­формацию в 2 бита, три цифры — в 3 бита и т. д. Количест­во информации в битах равно количеству цифр двоичного компьютерного кода (табл. 1.3).
Количество информации, которое несет двоич­ный компьютерный код.

Двоичный компьютерный код

Символов на нашей клавиатуре около 200 (русский и латинский алфавит, строчные и прописные буквы, цифры, знаки препинания, спецсимволы). Попробуем подобрать число n, достаточное для кодирования этих символов: 27 = 128 (мало), 28 = 256 (хватит). Поэтому в кодировке ASCII 1 символ текста кодируется одним байтом (8 битами).

Количество данных, обрабатываемых компьютером, измеряется в байтах, но чаще для этого используются более крупные единицы:
1 Килобайт (Кб) = 2 10 байт = 1024 байт
1 Мегабайт (Мб) = 2 10 Кб = 1 048 576 байт
1 Гигабайт (Гб) = 2 10 Мб = 1 073 741 824 байт.

Может возникнуть вопрос, почему в международной системе СИ приставки Кило, Мега и Гига вдруг получили другое значение. Ответ здесь в больших буквах. Кило и кило — это две большие разницы.
1 килобайт (кб) = 10 3 байт = 1 000 байт
1 мегабайт (мб) = 10 6 байт = 1 000 000 байт
1 гигабайт (гб) = 10 9 байт = 1 000 000 000 байт.
В ноябре 2000 г. международной электротехнической комиссией (МЭК) были приняты поправки к международному стандарту. По этому решению приставки, кратные степеням 2 получили своё особое название:
1 кибибайт (Киб)= 2 10 байт = 1024 байт
1 мебибайт (Миб) = 2 10 Киб = 1 048 576 байт
1 гибибайт (Гиб)= 2 10 Миб = 1 073 741 824 байт
К сожалению, эти приставки не стали привычными нашему слуху, хотя срок их существования уже достаточно большой.
Постановлением Правительства Российской Федерации от 31 октября 2009 г. № 879 закреплено обозначение двоичных приставок в привычном звучании, но написание их отличается от десятичных.

Скорость передачи данных и пропускную способность каналов связи принято измерять в битах в секунду (бит/с) и кратных этому:
1 килобит (кбит/с) = 10 3 бит/с
1 мегабит (мбит/с) = 10 6 бит/с
1 гигабит (гбит/с) = 10 9 бит/с
А при измерении оперативной памяти принято измерение в единицах, кратных не степеням десятки, а степеням двойки.

Читайте также:  Способ избрание управления многоквартирного дома

Из-за этого первоначально и возникла путаница в приставках.

Источник

Измерение информации: алфавитный подход

Описание презентации по отдельным слайдам:

Описание слайда:

Измерение информации: алфавитный подход
Информация и информационные процессы

Описание слайда:

Как измерить информацию?
Вопрос: «Как измерить информацию?» очень непростой.
Ответ на него зависит от того, что понимать под информацией. Но поскольку определять информацию можно по-разному, то и способы измерения тоже могут быть разными.
ИНФОРМАЦИЯ

Описание слайда:

Алфавитный подход к измерению информации
Познакомимся с способом измерения информации, который не связывает количество информации с содержанием сообщения, и называется он алфавитным подходом.
При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.
Применение алфавитного подхода удобно прежде всего при использовании технических средств работы с информацией. В этом случае теряют смысл понятия «новые — старые», «понятные — непонятные» сведения. Алфавитный подход является объективным способом измерения информации в отличие от субъективного содержательного подхода.

Описание слайда:

Алфавит и его мощность
Все множество используемых в языке символов будем традиционно называть алфавитом.
Обычно под алфавитом понимают только буквы, но поскольку в тексте могут встречаться знаки препинания, цифры, скобки, то мы их тоже включим в алфавит. В алфавит также следует включить и пробел, т.е. пропуск между словами.
Полное количество символов алфавита принято называть мощностью алфавита.
Будем обозначать эту величину буквой N. Например, мощность алфавита из заглавных русских букв и отмеченных дополнительных символов равна 54.
АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЬЪЭЮЯ0123456789(). «»:-; (пробел)

Описание слайда:

Сколько информации несет один символ в русском языке
Представьте себе, что текст к вам поступает последовательно, по одному знаку, словно бумажная ленточка, выползающая из телеграфного аппарата. Предположим, что каждый появляющийся на ленте символ с одинаковой вероятностью может быть любым символом алфавита.
В каждой очередной позиции текста может появиться любой из N символов.
Тогда, согласно известной нам формуле 2I = N , каждый такой символ несет I бит информации, которое можно определить из решения уравнения: 2I = 54.
Получаем: I = 5.755 бит.
Вот сколько информации несет один символ в русском тексте!
П Р И В Е Т ! К А К Д

Описание слайда:

Количество информации в тексте
А теперь для того, чтобы найти количество информации во всем тексте, нужно посчитать число символов в нем и умножить на I.
Посчитаем количество информации на одной странице книги.
Пусть страница содержит 50 строк. В каждой строке — 60 символов. Значит, на странице умещается 50×60=3000 знаков. Тогда объем информации будет равен: 5,755 х 3000 = 17265 бит.

При алфавитном подходе к измерению информации количество информации зависит не от содержания, а от размера текста и мощности алфавита.

Описание слайда:

Задание 1:
Определите информационный объем страницы книги, если для записи текста использовались только заглавные буквы русского алфавита, кроме буквы Ё.
Решение:
N = 32
2I = N
2I = 32
I = 5
На странице 3000 знаков, тогда объем информации = 3000 * 5 = 15000 бит.

Описание слайда:

Двоичный алфавит
А что если алфавит состоит только из двух символов 0 и 1?

В этом случае: N = 2; 2I = N; 2I = 2; I = 1!
При использовании двоичной системы (алфавит состоит из двух знаков: 0 и 1) каждый двоичный знак несет 1 бит информации.

Интересно, что сама единица измерения информации «бит» получила свое название от английского сочетания
«binary digit» — «двоичная цифра».

Описание слайда:

Достаточный алфавит
Удобнее всего измерять информацию, когда размер алфавита N равен целой степени двойки. Например, если N=16, то каждый символ несет 4 бита информации потому, что 24 = 16. А если N =32, то один символ «весит» 5 бит.
Ограничения на максимальный размер алфавита теоретически не существует. Однако есть алфавит, который можно назвать достаточным. С ним мы скоро встретимся при работе с компьютером. Это алфавит мощностью 256 символов. В алфавит такого размера можно поместить все практически необходимые символы: латинские и русские буквы, цифры, знаки арифметических операций, всевозможные скобки, знаки препинания.
Поскольку 256 = 28, то один символ этого алфавита «весит» 8 бит. Причем 8 бит информации — это настолько характерная величина, что ей даже присвоили свое название — байт.
1 байт = 8 бит

Читайте также:  Какими способами стимулируют роды
Описание слайда:

Количество информации в тексте
Сегодня очень многие люди для подготовки писем, документов, статей, книг и пр. используют компьютерные текстовые редакторы. Компьютерные редакторы, в основном, работают с алфавитом размером 256 символов.
В этом случае легко подсчитать объем информации в тексте. Если 1 символ алфавита несет 1 байт информации, то надо просто сосчитать количество символов; полученное число даст информационный объем текста в байтах.
Пусть небольшая книжка, сделанная с помощью компьютера, содержит 150 страниц; на каждой странице — 40 строк, в каждой строке — 60 символов.
Значит страница содержит 40×60=2400 байт информации.
Объем всей информации в книге: 2400 х 150 = 360 000 байт.

Описание слайда:

Более крупные единицы информации

Описание слайда:

Скорость передачи информации
Прием-передача информации могут происходить с разной скоростью.
Количество информации, передаваемое за единицу времени, есть скорость передачи информации или скорость информационного потока.
Очевидно, эта скорость выражается в таких единицах, как бит в секунду (бит/с), байт в секунду (байт/с), килобайт в секунду (Кбайт/с) и т.д.

Описание слайда:

Вопросы:
Что такое «алфавит»? Что такое «мощность алфавита»?
Как определяется количество информации в сообщении с алфавитной точки зрения?
Что больше 1 Кбайт или 1000 байт?
Расположите единицы измерения информации в порядке возрастания:
Гигабайт; Байт; Мегабайт; Килобайт.
Сколько информации содержится в сообщении, если для кодирования одного символа использовать 1 байт:
«Компьютер – универсальный прибор.»
Два текста содержат одинаковое количество символов. Первый текст составлен в алфавите мощностью 32 символа, второй – мощностью 64 символа. Во сколько раз отличается количество информации в этих текстах?

Описание слайда:

Задание 2:
Племя Мумбу-Юмбу использует алфавит из букв: αβγδεζηθλμξσφψ, точки и для разделения слов используется пробел.
Сколько информации несет свод законов племени, если в нем 12 строк и в каждой строке по 20 символов?

Описание слайда:

Задание 3:
Вычислите какова мощность алфавита, с помощью которого записано сообщение, содержащее 2048 символов, если его объем составляет 1.25 Кбайта.

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Алфавитный подход к определению количества информации

Цели урока:

1) Обучающая: рассмотреть алфавитный подход к измерению количества информации, научиться вычислять количество информации с точки зрения алфавитного подхода.

2) Развивающая: развитие у учащихся самостоятельности и познавательной активности.

3) Воспитывающая: воспитывать дисциплинированность, аккуратность, собранность.

Литература:

1) Угринович Н. Д. «Информатика 8 класс»,

2) Заславская О. Ю., Левченко И. В. «Информатика: весь курс».

1) Угринович Н. Д. «Информатика 8 класс».

Тип урока: ознакомление с новым материалом

План урока:

1. Организационный этап.

2. Актуализация знаний.

3. Подготовка учащихся к усвоению нового материала.

4. Этап получения новых знаний.

5. Этап обобщения и закрепления нового материала.

7. Заключительный этап.

Ход урока

1. Организационный этап.

Здравствуйте. Прежде чем мы приступим к уроку, хотелось бы, чтобы каждый из вас настроился на рабочий лад.

2. Актуализация знаний.

1) В чём заключается содержательный подход к измерению информации? (Количество информации — мера уменьшения неопределённости знаний при получении информационных сообщений.)

2) Какую минимальную единицу информации используют для измерения количества информации? (Бит)

3) Какую формулу используют для определения количества информации? (Формулу Хартли)

4) Производится бросание симметричной четырехгранной пирамидки. Какое количество информации мы получаем в зрительном сообщении о ее падении на одну из граней? (2 бита)

6) Из непрозрачного мешочка вынимают шарики с номерами и известно, что информационное сообщение о номере шарика несет 5 битов информации. Определите количество шариков в мешочке. (35)

3. Этап получения новых знаний.

Скачать видеоурок «Алфавитный подход к определению количества информации»

Содержательный подход к измерению информации рассматривает информацию с точки зрения человека, как уменьшение неопределенности наших знаний.

Однако любое техническое устройство не воспринимает содержание информации. Поэтому в вычислительной технике используется другой подход к определению количества информации. Он называется алфавитным подходом.

При алфавитном подходе к определению количества информации отвлекаются от содержания (смысла) информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.

Проще всего разобраться в этом на примере текста, написанного на каком-нибудь языке. Для нас удобнее, чтобы это был русский язык.

Читайте также:  Простой способ засолки белянок

Все множество используемых в языке символов будем традиционно называть алфавитом. Обычно под алфавитом понимают только буквы, но поскольку в тексте могут встречаться знаки препинания, цифры, скобки, то мы их тоже включим в алфавит. В алфавит также следует включить и пробел, пропуск между словами.

Алфавит — это множество символов, используемых при записи текста.

Мощность (размер) алфавита — это полное количество символов в алфавите.

Мощность алфавита обозначается буквой N.

· мощность алфавита из русских букв равна 33;

· мощность алфавита из латинских букв — 26;

· мощность алфавита текста набранного с клавиатуры равна 256 (строчные и прописные латинские и русские буквы, цифры, знаки арифметических операций, скобки, знаки препинания );

· мощность двоичного алфавита равна 2.

При алфавитном подходе считается, что каждый символ текста имеет информационную емкость. Информационная емкость знака зависит от мощности алфавита.

Алфавит, с помощью которого записано сообщение состоит из N знаков. В простейшем случае, когда длина кода сообщения составляет один знак, отправитель может послать одно из N возможных сообщений, которое будет нести количество информации I.

Тогда в формуле

N — количество знаков в алфавите знаковой системы, I — количество информации, которое несет каждый знак.

Например, из формулы можно определить количество информации, которое несет знак в двоичной знаковой системе

Информационная емкость знака двоичной знаковой системы составляет 1 бит.

Задача 1. Определите, какое количество информации несет буква русского алфавита (без буквы ё).

Буква русского алфавита несет 5 битов информации.

Формула связывает между собой количество возможных событий и количество информации, которое несёт полученное сообщение. В рассматриваемой ситуации N — это количество знаков в алфавите, знаковой системы, а I — количество информации, которое несёт один знак.

Сообщение состоит из последовательности знаков, каждый из которых несет определенное количество информации.

Количество информации в сообщении можно посчитать, умножив количество информации, которое несет один знак на количество знаков в сообщении.

где — количество информации в сообщении

— количество информации, которое несет один знак

— количество знаков в сообщении

Давайте решим с вами задачу.

Задача 2. Какое количество информации содержит слово «ПРИВЕТ», если считать, что алфавит состоит из 32 букв?

Решение. Что нам требуется найти в данной задаче? Нам нужно найти какое количество информации содержит слово «ПРИВЕТ».

Что нам для этого дано?

Дано: количество знаков в сообщение и мощность алфавита.

Количество знаков в сообщении равно 6, а мощность данного алфавита равна 32.

Что нам нужно найти? Нам нужно найти какое количество информации содержит слово «ПРИВЕТ».

Посмотрим на наше сообщение, оно содержит несколько знаков, значит для того чтобы найти количество информации нашего сообщения, нам нужно умножив количество информации, которое несет один знак, на количество знаков в сообщении, воспользоваться формулой «и» суммарное равно «и» умножить на «к».

Но мы еще не можем воспользоваться формулой, т.к. не знаем какое количество информации несет один знак. Для этого воспользуемся формулой Хартли. Сообщение записано с помощью алфавита, мощность которого равна 32, N равно 32. Мы получили уравнение. Решив это уравнение, мы получили, что количество информации, которое несет один знак нашего алфавита, равно 5 бит. Зная количество информации, которое несет один знак нашего алфавита, и количество знаков в сообщении, мы можем найти какое количество информации содержит наше сообщение.

Итак, наше сообщение содержит 30 бит.

4. Этап обобщения и закрепления нового материала.

1) Какое количество информации содержит слово «ИНФОРМАТИКА», если считать, что алфавит состоит из 32 букв? (55 битов)

2) Определить количество информации, содержащееся в слове из 10 символов, если известно, что мощность алфавита равна 32 символам. (50 бит)

3) Сколько бит информации содержится в сообщении, состоящем из 5 символов, при использовании алфавита, состоящего из 64 символов. (6 битов)

4) Определить информативность сообщения «А + В = С», если для описания математических формул необходимо воспользоваться 64-символьным алфавитом. (30 бит)

5) Для представления числовых данных используют 16-ричный алфавит, включающий знаки математических действий. Сколько битов информации содержит выражение «32 * 5 = 160»? (32 бита)

6) Практическая работа № 2. «Тренировка ввода текстовой и числовой информации с помощью клавиатурного тренажера»

5. Рефлексия.

Источник

Оцените статью
Разные способы