- Измерение информации понятие способы измерения единицы измерения информации
- 1.1. Понятие информации. Количество информации. Единицы измерения информации
- Измерение информации понятие способы измерения единицы измерения информации
- Информатика. 7 класс
- Сейчас используют целых пять систем кодировок русского алфавита (КОИ8-Р, Windows, MS-DOS, Macintosh и ISO). Из-за количества систем кодировок и отсутствия одного стандарта, очень часто возникают недоразумения с переносом русского текста в компьютерный его вид. Поэтому, всегда нужно уточнять, какая система кодирования установлена на компьютере.
Измерение информации понятие способы измерения единицы измерения информации
1.1. Понятие информации. Количество информации. Единицы измерения информации
Информация является одним из фундаментальных понятий современной науки наряду с такими понятиями, как «вещество» и «энергия».
Общее определение этому термину дать невозможно. Однако в раз-личных предметных областях даётся специализированное определение информации, подходящее для данной предметной области. В рамках этого задания мы будем говорить о математической теории информации и рассмотрим два подхода — содержательный (Клод Шеннон) и алфавитный (А.Н.Колмогоров). Начнём с определения понятия «инфор-мация» в каждом из этих подходов.
В содержательном подходе, информация — это снятая неопределённость. Неопределённость некоторого события — это количество возможных результатов (исходов) данного события.
Например, если мы подбрасываем вверх монету, то она может упасть двумя различными способами (орлом вверх или решкой вверх). Соответственно, у данного события два возможных исхода. Если же подбрасывать игральный кубик, то исходов будет шесть.
В алфавитном подходе информация — это сообщение (последовательность символов некоторого алфавита). Причём существенными являются только размер алфавита и количество символов в сообщении. Конкретное содержание сообщения интереса не представляет. Чаще всего алфавит является двоичным (состоит из `2` символов – «`0`» и «`1`»).
После таких определений понятия «информация» можно говорить об её измерении. Введём несколько основных единиц измерения информации.
Чаще всего в качестве основной единицы измерения информации используется бит. При алфавитном подходе один бит — это количество информации, которое можно передать в сообщении, состоящем из одного двоичного знака (`«0»` или `«1»`). С точки же зрения содержательного подхода один бит — это количество информации, уменьшающее неопределённость знания в два раза.
Наряду с битами можно использовать и другие единицы измерения информации, например, триты или диты. При алфавитном подходе один трит — это количество информации, которое можно передать в сообщении, состоящем из одного троичного знака `(«0»`, `«1»` или `«2»)`. С точки же зрения содержательного подхода один трит — это количество информации, уменьшающее неопределённость знания в три раза. Соответственно, один дит — это количество информации, уменьшаю-щее неопределённость знания в десять раз, и количество информации, которое можно передать в сообщении, состоящем из одного десятичного знака (арабской цифры). В некоторых задачах (например, в задаче взлома кодового замка) удобнее в качестве основной единицы измерения информации использовать не биты, а диты, поскольку угадывание каждой цифры из кода уменьшает количество комбинаций в `10` раз.
Для каждой основной единицы измерения информации существуют производные более крупные единицы измерения. Поскольку чаще всего мы будем использовать в качестве основной единицы бит, рассмотрим производны е единиц ы измерения для бита. На практике чаще всего используется не бит, а байт.
`1` байт (`1`B) `= 8` бит;
Далее существует две линейки производных единиц для байта – линейка десятичных приставок и линейка двоичных приставок. В случае десятичных приставок каждая следующая единица измерения равна `1000` предыдущих единиц. Обозначаются десятичные приставки латинскими буквами (буква префикса из системы СИ и заглавная «B», обозначающая «байт») Итак:
`1` килобайт (`1` kB) `= 1000` B (1000 байт);
`1` мегабайт (`1` MB) `= 1000` kB ;
`1` гигабайт (`1` GB) `= 1000` MB;
`1` терабайт (`1` TB) `= 1000` GB;
`1` петабайт (`1` PB) `= 1000` TB;
`1` эксабайт (`1` EB) `= 1000` PB;
`1` зеттабайт (`1` ZB) `= 1000` EB;
`1` йоттабайт(`1` YB) `= 1000` ZB.
Более крупных единиц на настоящий момент не введено.
При использовании двоичных приставок, каждая следующая едини-ца измерения равна 1024 предыдущих единиц. В России принято обозначать двоичные приставки, записывая префикс заглавной русской буквой и после него слово «байт» целиком и тоже русскими буквами. За рубежом для обозначения двоичных приставок между префиксом и «B» добавляется маленькая буква «i» (от слова «binary»). Кроме того, все префиксы записываются заглавными буквами. Итак:
`1` кибибайт (`1` Кбайт, `1` KiB) `=2^10` байт `= 1024` байт;
`1` мебибайт (`1` Мбайт, `1` MiB) `=2^20` байт `= 1024` Кбайт;
1 гибибайт (`1` Гбайт, `1` GiB) `=2^30` байт `= 1024` Мбайт;
1 тебибайт (`1` Тбайт, `1` TiB) `=2^40` байт `= 1024` Гбайт;
1 пебибайт (`1` Пбайт, `1` PiB) `=2^50` байт `= 1024` Тбайт;
1 эксбибайт (`1` Эбайт, `1`EiB) `=2^60` байт `= 1024` Пбайт;
1 зебибайт (`1` Збайт, `1` ZiB) `=2^70` байт `= 1024` Эбайт;
1 йобибайт (`1` Йбайт, `1` YiB) `=2^80` байт `= 1024` Збайт.
Источник
Измерение информации понятие способы измерения единицы измерения информации
Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации.
Вопрос: «Как измерить информацию?» очень непростой. Ответ на него зависит от того, что понимать под информацией. Но поскольку определять информацию можно по-разному, то и способы измерения тоже могут быть разными.
Содержательный подход к измерению информации.
Для человека информация — это знания человека. Рассмотрим вопрос с этой точки зрения.
Получение новой информации приводит к расширению знаний. Если некоторое сообщение приводит к уменьшению неопределенности нашего знания, то можно говорить, что такое сообщение содержит информацию.
Отсюда следует вывод, что сообщение информативно (т.е. содержит ненулевую информацию), если оно пополняет знания человека. Например, прогноз погоды на завтра — информативное сообщение, а сообщение о вчерашней погоде неинформативно, т.к. нам это уже известно.
Нетрудно понять, что информативность одного и того же сообщения может быть разной для разных людей. Например: «2×2=4» информативно для первоклассника, изучающего таблицу умножения, и неинформативно для старшеклассника.
Но для того чтобы сообщение было информативно оно должно еще быть понятно. Быть понятным, значит быть логически связанным с предыдущими знаниями человека. Определение «значение определенного интеграла равно разности значений первообразной подынтегральной функции на верхнем и на нижнем пределах», скорее всего, не пополнит знания и старшеклассника, т.к. оно ему не понятно. Для того, чтобы понять данное определение, нужно закончить изучение элементарной математики и знать начала высшей.
Получение всяких знаний должно идти от простого к сложному. И тогда каждое новое сообщение будет в то же время понятным, а значит, будет нести информацию для человека.
Сообщение несет информацию для человека, если содержащиеся в нем сведения являются для него новыми и понятными.
Алфавитный подход к измерению информации.
А теперь познакомимся с другим способом измерения информации. Этот способ не связывает количество информации с содержанием сообщения, и называется он алфавитным подходом.
При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.
Все множество используемых в языке символов будем традиционно называть алфавитом. Обычно под алфавитом понимают только буквы, но поскольку в тексте могут встречаться знаки препинания, цифры, скобки, то мы их тоже включим в алфавит. В алфавит также следует включить и пробел, т.е. пропуск между словами.
Полное количество символов алфавита принято называть мощностью алфавита. Будем обозначать эту величину буквой N. Например, мощность алфавита из русских букв и отмеченных дополнительных символов равна 54.
При алфавитном подходе к измерению информации количество информации зависит не от содержания, а от размера текста и мощности алфавита.
При использовании двоичной системы (алфавит состоит из двух знаков: 0 и 1) каждый двоичный знак несет 1 бит информации. Интересно, что сама единица измерения информации «бит» получила свое название от английского сочетания «binary digit» — «двоичная цифра».
1 бит — это минимальная единица измерения информации!
Один символ алфавита «весит» 8 бит. Причем 8 бит информации — это настолько характерная величина, что ей даже присвоили свое название — байт.
Сегодня очень многие люди для подготовки писем, документов, статей, книг и пр. используют компьютерные текстовые редакторы. Компьютерные редакторы, в основном, работают с алфавитом размером 256 символов.
В любой системе единиц измерения существуют основные единицы и производные от них.
Для измерения больших объемов информации используются следующие производные от байта единицы:
Источник
Информатика. 7 класс
Конспект урока
Единицы измерения информации
Перечень вопросов, рассматриваемых в теме:
- Алфавитный подход к измерению информации.
- Наименьшая единица измерения информации.
- Информационный вес одного символа алфавита и информационный объём всего сообщения.
- Единицы измерения информации.
- Задачи по теме урока.
Каждый символ информационного сообщения несёт фиксированное количество информации.
Единицей измерения количества информации является бит – это наименьшаяединица.
1 Кб (килобайт) = 1024 байта= 2 10 байтов
1 Мб (мегабайт) = 1024 Кб = 2 10 Кб
1 Гб (гигабайт) = 1024 Мб = 2 10 Мб
1 Тб (терабайт) =1024 Гб = 2 10 Гб
Формулы, которые используются при решении типовых задач:
Информационный вес символа алфавита и мощность алфавита связаны между собой соотношением: N = 2 i .
Информационный объём сообщения определяется по формуле:
I – объём информации в сообщении;
К – количество символов в сообщении;
i – информационный вес одного символа.
- Босова Л. Л. Информатика: 7 класс. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2017. – 226 с.
- Босова Л. Л. Информатика: 7–9 классы. Методическое пособие. // Босова Л. Л., Босова А. Ю., Анатольев А. В., Аквилянов Н.А. – М.: БИНОМ, 2019. – 512 с.
- Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 1. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
- Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 2. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
- Гейн А. Г. Информатика: 7 класс. // Гейн А. Г., Юнерман Н. А., Гейн А.А. – М.: Просвещение, 2012. – 198 с.
Теоретический материал для самостоятельного изучения.
Любое сообщение несёт некоторое количество информации. Как же его измерить?
Одним из способов измерения информации является алфавитный подход, который говорит о том, что каждый символ любого сообщения имеет определённый информационный вес, то есть несёт фиксированное количество информации.
Сегодня на уроке мы узнаем, чему равен информационный вес одного символа и научимся определять информационный объём сообщения.
Что же такое символ в компьютере? Символом в компьютере является любая буква, цифра, знак препинания, специальный символ и прочее, что можно ввести с помощью клавиатуры. Но компьютер не понимает человеческий язык, он каждый символ кодирует. Вся информация в компьютере представляется в виде нулей и единичек. И вот эти нули и единички называются битом.
Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется один бит.
Алфавит любого понятного нам языка можно заменить двоичным алфавитом. При этом мощность исходного алфавита связана с разрядностью двоичного кода соотношением: N = 2 i .
Эту формулу можно применять для вычисления информационного веса одного символа любого произвольного алфавита.
Алфавит древнего племени содержит 16 символов. Определите информационный вес одного символа этого алфавита.
Составим краткую запись условия задачи и решим её:
16 = 2 i , 2 4 = 2 i , т. е. i = 4
Ответ: i = 4 бита.
Информационный вес одного символа этого алфавита составляет 4 бита.
Сообщение состоит из множества символов, каждый из которых имеет свой информационный вес. Поэтому, чтобы вычислить объём информации всего сообщения, нужно количество символов, имеющихся в сообщении, умножить на информационный вес одного символа.
Математически это произведение записывается так: I = К · i.
Например: сообщение, записанное буквами 32-символьного алфавита, содержит 180 символов. Какое количество информации оно несёт?
32 = 2 i , 2 5 = 2 i , т.о. i = 5,
I = 180 · 5 = 900 бит.
Ответ: I = 900 бит.
Итак, информационный вес всего сообщения равен 900 бит.
В алфавитном подходе не учитывается содержание самого сообщения. Чтобы вычислить объём содержания в сообщении, нужно знать количество символов в сообщении, информационный вес одного символа и мощность алфавита. То есть, чтобы определить информационный вес сообщения: «сегодня хорошая погода», нужно сосчитать количество символов в этом сообщении и умножить это число на восемь.
I = 23 · 8 = 184 бита.
Значит, сообщение весит 184 бита.
Как и в математике, в информатике тоже есть кратные единицы измерения информации. Так, величина равная восьми битам, называется байтом.
Бит и байт – это мелкие единицы измерения. На практике для измерения информационных объёмов используют более крупные единицы: килобайт, мегабайт, гигабайт и другие.
1 Кб (килобайт) = 1024 байта= 2 10 байтов
1 Мб (мегабайт) = 1024 Кб = 2 10 Кб
1 Гб (гигабайт) = 1024 Мб = 2 10 Мб
1 Тб (терабайт) =1024 Гб = 2 10 Гб
Итак, сегодня мы узнали, что собой представляет алфавитный подход к измерению информации, выяснили, в каких единицах измеряется информация и научились определять информационный вес одного символа и информационный объём сообщения.
Материал для углубленного изучения темы.
Как текстовая информация выглядит в памяти компьютера.
Набирая текст на клавиатуре, мы видим привычные для нас знаки (цифры, буквы и т.д.). В оперативную память компьютера они попадают только в виде двоичного кода. Двоичный код каждого символа, выглядит восьмизначным числом, например 00111111. Теперь возникает вопрос, какой именно восьмизначный двоичный код поставить в соответствие каждому символу?
Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код ‑ просто порядковый номер символа в двоичной системе счисления.
Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.Таблица для кодировки – это «шпаргалка», в которой указаны символы алфавита в соответствии порядковому номеру. Для разных типов компьютеров используются различные таблицы кодировки.
Таблица ASCII (или Аски), стала международным стандартом для персональных компьютеров. Она имеет две части.
В этой таблице латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений. Это правило соблюдается и в других таблицах кодировки и называется принципом последовательного кодирования алфавитов. Благодаря этому понятие «алфавитный порядок» сохраняется и в машинном представлении символьной информации. Для русского алфавита принцип последовательного кодирования соблюдается не всегда.
Запишем, например, внутреннее представление слова «file». В памяти компьютера оно займет 4 байта со следующим содержанием:
01100110 01101001 01101100 01100101.
А теперь попробуем решить обратную задачу. Какое слово записано следующим двоичным кодом:
01100100 01101001 01110011 01101011?
В таблице 2 приведен один из вариантов второй половины кодовой таблицы АSСII, который называется альтернативной кодировкой. Видно, что в ней для букв русского алфавита соблюдается принцип последовательного кодирования.
Вывод: все тексты вводятся в память компьютера с помощью клавиатуры. На клавишах написаны привычные для нас буквы, цифры, знаки препинания и другие символы. В оперативную память они попадают в форме двоичного кода.
Из памяти же компьютера текст может быть выведен на экран или на печать в символьной форме.
Сейчас используют целых пять систем кодировок русского алфавита (КОИ8-Р, Windows, MS-DOS, Macintosh и ISO). Из-за количества систем кодировок и отсутствия одного стандарта, очень часто возникают недоразумения с переносом русского текста в компьютерный его вид. Поэтому, всегда нужно уточнять, какая система кодирования установлена на компьютере.
Разбор решения заданий тренировочного модуля
№1. Определите информационный вес символа в сообщении, если мощность алфавита равна 32?
Информационный вес символа алфавита и мощность алфавита связаны между собой соотношением: N = 2 i .
32 = 2 i , 32 – это 2 5 , следовательно, i =5 битов.
№2. Выразите в килобайтах 2 16 байтов.
2 16 можно представить как 2 6 · 2 10 .
2 6 = 64, а 2 10 байт – это 1 Кб. Значит, 64 · 1 = 64 Кб.
№3. Тип задания: выделение цветом
8 х = 32 Кб, найдите х.
8 можно представить как 2 3 . А 32 Кб переведём в биты.
Источник