Используя схему определить равнодействующую системы сил геометрическим способом

Решение. Пример 1. Определение равнодействующей системы сил

Пример 1. Определение равнодействующей системы сил.

Определить равнодействующую плоской системы сходящихся сил аналитическим и геометрическим способами (рис. П1.1). Дано:

1. Определить равнодействующую аналитическим способом (рис. П1.1a).

2. Определить равнодействующую графическим способом.

С помощью транспортира в масштабе 2 мм = 1 кН строим много­угольник сил (рис. П1.1б). Измерением определяем модуль равно­действующей силы и угол наклона ее к оси Ох.

Результаты расчетов не должны отличаться более чем на 5%:

Расчетно-графическая работа №1. Определение равнодействующей плоской системы схо­дящихся сил аналитическим и геометрическим способами

Задание 1. Используя схему рис. П1.1а, определить равнодей­ствующую системы сил геометрическим способом

Пример 2. Решение задачи на равновесие аналитиче­ским способом.

Грузы подвешены на стержнях и канатах и находятся в равно­весии. Определить реакции стержней АВ и СВ (рис. П1.2).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Решение

1. Определить равнодействующую аналитическим способом (рис. П1.1a).

2. Определить равнодействующую графическим способом.

С помощью транспортира в масштабе 2 мм = 1 кН строим много­угольник сил (рис. П1.1б). Измерением определяем модуль равно­действующей силы и угол наклона ее к оси Ох.

Результаты расчетов не должны отличаться более чем на 5%:

Расчетно-графическая работа №1. Определение равнодействующей плоской системы схо­дящихся сил аналитическим и геометрическим способами

Задание 1. Используя схему рис. П1.1а, определить равнодей­ствующую системы сил геометрическим способом

Пример 2. Решение задачи на равновесие аналитиче­ским способом.

Грузы подвешены на стержнях и канатах и находятся в равно­весии. Определить реакции стержней АВ и СВ (рис. П1.2).

Источник

Пример 1. Определение равнодействующей системы сил

Определить равнодействующую плоской системы сходящихся сил аналитическим и геометрическим способами (рис. П 1.1).

Дано: F1 = 10кН; F2 = 15кН; F3 = 12кН; F4 = 8кН; F5 = 8кН;

αl = 30˚; α2 = 60˚; α3= 120˚; α4 = 180˚; α5 = 300˚.

Решение

1. Определить равнодействующую аналитическим способом (рис. П 1.1а).

2. Определить равнодействующую графическим способом.

С помощью транспортира в масштабе 2 мм = 1 кН строим многоугольник сил (рис. П l.l 6). Измерением определяем модуль равнодействующей силы и угол наклона ее к оси Ох.

Результаты расчетов не должны отличаться более чем на 5 %:

Задание № 1

Определение равнодействующей плоской системы сходящихся сил аналитическим и геометрическим способами.

Задание. Используя схему рис. П. 1.1а, определить равнодействующую системы сил.

Параметр Вариант
F1, кН
F2, кН
F3, кН
F4, кН
F5, кН
1,град О О О О О
2,град
3,град О О О О
4,град
5,град
Параметр Вариант
F1, кН
F2, кН
F3, кН
F4, кН
F5, кН
1,град О О О О О
2,град
3,град О О О
4,град
5,град
Параметр Вариант
F1, кН
F2, кН
F3, кН
F4, кН
F5, кН
1,град О О О О
2,град
3,град О О О О
4,град
5,град

Пример 2. Решение задачи на равновесие аналитическим способом

Грузы подвешены на стержнях и канатах и находятся в равновесии. Определить реакции стержней АВ и СВ (рис. Пl.2).

Читайте также:  Способ крепления половой доски

1. Определяем вероятные направления реакций (рис. П1.2а).

Мысленно убираем стержень АВ, при этом стержень С В опускается, следовательно, точка В отодвигается от стены: назначение стержня АВ — тянуть точку В к стене.

Если убрать стержень СВ, точка В опустится, следовательно, стержень С В поддерживает точку В снизу — реакция направлена вверх.

2. Освобождаем точку В от связи (рис. П1.2б).

3. Выберем направление осей координат, ось Ох совпадает с реакцией Rl.

4. Запишем уравнения равновесия точки В:

5. Из второго уравнения получаем:

Из первого уравнения получаем:

Вывод: стержень АВ растянут силой 28,07 кН, стержень СВ сжат силой 27,87 кН.

Примечание. Если при решении реакция связи окажется отрицательной, значит, вектор силы направлен в противоположную сторону.

В данном случае реакции направлены, верно.

Задание № 2

Условие равновесия плоской системы сходящихся сил в аналитической форме.

Задание. Определить реакции стержней АС и AD (рис. П l.3).

Параметры Варианты.
G, кН.
, град.
, град.
, град.
Параметры Варианты.
G, кН.
, град.
, град.
, град.

Тест для самоконтроля:

Темы 1.1, 1.2. Статика.

Плоская сходящаяся система сил.

Источник

Техническая механика. Шпаргалка

Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.

Оглавление

  • 1. Аксиомы и понятие силы статики
  • 2. Связи и реакции связей
  • 3. Определение равнодействующей геометрическим способом
  • 4. Определение равнодействующей аналитическим способом
  • 5. Пара сил. Момент силы

Приведённый ознакомительный фрагмент книги Техническая механика. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.

3. Определение равнодействующей геометрическим способом

Система сил, линии действия которых пересекаются в одной точке, называется сходящейся.

Необходимо определить равнодействующую системы сходящихся сил (F1; F2; F3;…; Fn), где n — число сил, входящих в систему.

В соответствии со следствиями из аксиом статики, все силы системы можно переместить вдоль линии действия, и все силы окажутся приложенными к одной точке.

Используя свойство векторной суммы сил, можно получить равнодействующую любой сходящейся системы сил, складывая последовательно силы, входящие в систему. Образуется многоугольник сил.

При графическом способе определения равнодействующей векторы сил можно вычерчивать в любом порядке, результат (величина и направление равнодействующей) при этом не изменится.

Вектор равнодействующей направлен навстречу векторам сил-слагаемых. Такой способ получения равнодействующей называется геометрическим.

Многоугольник сил строится в следующем порядке.

1. Вычертить векторы сил заданной системы в некотором масштабе один за другим так, чтобы конец предыдущего вектора совпал с началом последующего.

2. Вектор равнодействующей замыкает полученную ломаную линию; он соединяет начало первого вектора с концом последнего и направлен ему навстречу.

3. При изменении порядка вычерчивания векторов в многоугольнике меняется вид фигуры. На результат порядок вычерчивания не влияет.

Условие равновесия плоской системы сходящихся сил. При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого.

Если плоская система сходящихся сил находится в равновесии, многоугольник сил этой системы должен быть замкнут.

Если в системе три силы, образуется треугольник сил.

Геометрическим способом пользуются, если в системе три силы. При решении задач на равновесие тело считается абсолютно твердым (отвердевшим).

Задачи решаются в следующем порядке.

1. Определить возможное направление реакций связей.

2. Вычертить многоугольник сил системы, начиная с известных сил, в некотором масштабе. (Многоугольник должен быть замкнут, все векторы-слагаемые направлены в одну сторону по обходу контура).

Читайте также:  Деятельность это специфический способ активности

3. Измерить полученные векторы сил и определить их величину, учитывая выбранный масштаб.

4. Для уточнения определить величины векторов (сторон многоугольника) с помощью геометрических зависимостей.

Источник

Презентация по технической механике на тему «Плоская система сходящихся сил. Определение равнодействующей геометрическим способом»

Описание презентации по отдельным слайдам:

ТЕМА УРОКА: «Плоская система сходящихся сил. Определение равнодействующей геометрическим способом»

Плоская система сходящихся сил Система сил, линии действия которых пересекаются в одной точке, называется сходящейся (рис. 2.1). Необходимо определить равнодействующую системы сходящихся сил (F1; F2; F3;. . ; Fn), п — число сил, входящих в систему. По следствию из аксиом статики, все силы системы можно переместить вдоль линии действия, и все силы окажутся приложенными в одной точке.

Равнодействующая сходящихся сил. Равнодействующую двух пересекающихся сил можно определить с помощью параллелограмма или треугольника сил (4-я аксиома) (рис. 2.2).

Используя свойства векторной суммы сил, можно получить равнодействующую любой сходящейся системы сил, складывая последовательно силы, входящие в систему. Образуется многоугольник сил (рис. 2.3). Вектор равнодействующей силы соединит начало первого вектора с концом последнего. При графическом способе определения равнодействующей век-торы сил можно вычерчивать в любом порядке, результат (величина и направление равнодействующей) при этом не изменится. Вектор равнодействующей направлен навстречу векторам сил слагаемых. Такой способ получения равнодействующей называют геометрическим. Замечание. При вычерчивании многоугольника обращать внимание на параллельность сторон многоугольника соответствующем векторам сил.

Порядок построения многоугольника сил: Вычертить векторы сил заданной системы в некотором масштабе один за другим так, чтобы конец предыдущего вектора совпадал с началом последующего. Вектор равнодействующей замыкает полученную ломаную линию; он соединяет начало первого вектора с концом последнего и направлен ему навстречу. При изменении порядка вычерчивания векторов в многоугольнике меняется вид фигуры. На результат порядок вычерчивания не влияет.

Условие равновесия плоской системы сходящихся сил. При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого. Если плоская система сходящихся сил находится в равновесии, многоугольник сил этой системы должен быть замкнут. Если в системе три силы, образуется треугольник сил.

Решение задач на равновесие геометрическим способом Порядок решения задач: Определить возможное направление реакций связей. Вычертить многоугольник сил системы, начиная с известных сил в некотором масштабе. (Многоугольник должен быть замкнут, все векторы-слагаемые направлены в одну сторону по обходу контура.) Измерить полученные векторы сил и определить их величину, учитывая выбранный масштаб. Для уточнения решения рекомендуется определить величины, векторов (сторон многоугольника) с помощью геометрических зависимостей.

Пример 1. Груз подвешен на стержнях и находится в равновесии. Определить усилия в стержнях (рис. 2.5, а). Решение 1. Усилия, возникающие в стержнях крепления, по величине равны силам, с которыми стержни поддерживают груз (5-я аксиома статики) (рис. 2.5, а). Определяем возможные направления реакций связей «жесткие стержни». γ = 1800 – 600 – 450 Усилия направлены вдоль стержней.

2. Освободим точку А от связей, заменив действие связей их реакциями (рис. 2.5, б). 3. Система находится в равновесии. Построим треугольник сил. Построение начнем с известной силы, вычертив вектор F в некотором масштабе. Из концов вектора F проводим линии, параллельные реакциям и R1 и R2. Пересекаясь, линии создадут треугольник (рис. 2.5, в). Зная масштаб построений и измерив длину сторон треугольника, можно определить величину реакций в стержнях.

Читайте также:  Как научиться завязывать шнурки детям легким способом

Для более точных расчетов можно воспользоваться геометрическими соотношениями, в частности теоремой синусов: отношение стороны треугольника к синусу противоположного угла — величина постоянная: Замечание. Если направление вектора (реакции связи) на заданной схеме и в треугольнике сил не совпало, значит, реакция на схеме должна быть направлена в противоположную сторону.

Пример 2. Груз подвешен на стержнях и канатах и находится в равновесии. Определить усилия в стержнях (рис. 2.6, а). Решение 1. Нанесем на схему возможные направления усилий, приложенных в точке А. Реакции стержней — вдоль стержней, усилие от каната — вдоль каната от точки А к точке В. 2. Груз находится в равновесии, следовательно, в равновесии находится точка А, в которой пересекаются три силы. Освободим точку А от связей и рассмотрим ее равновесие (рис. 2.6, б). Замечание. Рассмотрим только силы, приложенные к точке А. Груз растягивает канат силой 45 кН по всей длине, поэтому усилие от каната известно: Тз = 45 кН.

3. Строим треугольник для сил, приложенных в точке А, начиная с известной силы Т3. Стороны треугольника параллельны предполагаемым направлениям сил, приложенных в точке А. Образовался прямоугольный треугольник (рис. 2.6, е). 4. Неизвестные реакции стержней можно определить из соотношений в прямоугольном треугольнике:

Замечание. При равновесии векторы сил в треуголь­нике направлены один за другим (обходим треугольник по часовой стрелке). Сравним направления сил в треугольнике с принятыми в начале расчета на рис. 2.6, а. Направления совпали, следовательно, направления реакций определены верно.

Курс повышения квалификации

Охрана труда

  • Сейчас обучается 94 человека из 45 регионов

Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

  • Сейчас обучается 344 человека из 67 регионов

Курс профессиональной переподготовки

Охрана труда

  • Сейчас обучается 175 человек из 48 регионов

Номер материала: ДБ-274462

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

В Осетии студенты проведут уроки вместо учителей старше 60 лет

Время чтения: 1 минута

Рособрнадзор откажется от ОС Windows при проведении ЕГЭ до конца 2024 года

Время чтения: 1 минута

Минпросвещения будет стремиться к унификации школьных учебников в России

Время чтения: 1 минута

В России выбрали топ-10 вузов по работе со СМИ и контентом

Время чтения: 3 минуты

В Тюменской области продлили на неделю дистанционный режим для школьников

Время чтения: 1 минута

Минпросвещения разрабатывает образовательный минимум для подготовки педагогов

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Оцените статью
Разные способы