Искусственный интеллект способы создания

При чём здесь Дарвин? Как искусственный интеллект создаёт сам себя

Пересказ статьи Уилла Дугласа Хевена. Он пообщался с исследователями, которые создают ИИ-технологии прямо сейчас. И узнал, как они это делают.

Уилл Дуглас Хевен

(Will Douglas Heaven)

Ведущий редактор темы ИИ в медиакомпании MIT Technology Review. Освещает исследования, тренды в ИИ и рассказывает о людях, которые их формируют. Ранее — ведущий редактор сайта BBC о технологиях в области геополитики Future Now (англ. «Будущее сегодня»), главный редактор темы технологий в научно-популярном журнале New Scientist.

Копирайтер и SMM-специалист. Пишет про бизнес и технологии, работает с Билайн, Yandex.Cloud и TexTerra.

  • Почему боты из Uber, которые еле ходят, умнее других?
  • Нейросети и эволюция Дарвина: в чём связь?
  • Автоматизируем создание мозга
  • Учебники для искусственного интеллекта
  • Ждать ли восстания машин? Риски автономности ИИ

Хевен побеседовал с Руй Ваном — исследователем искусственного интеллекта в Uber, его бывшим коллегой Джеффом Клуном — он работает в исследовательской компании OpenAI и Эстебаном Реалом — инженером, который развивает машинное обучение в Google Brain. Они рассказали автору о новом подходе к созданию ИИ.

Давайте поговорим о нём, но прежде вспомним суть традиционного подхода. Разработчики берут заранее подготовленный массив данных (например, базу данных с фотографиями людей) и учат нейросеть находить их среди предметов или даже определять их личность по лицу. В то же время разработчики играют роль учителей и указывают ИИ, когда результат оказался верным, а когда — нет.

Умные боты POET

Собеседники Хевена действуют иначе — они доверяют обучение самой системе. Дают ей право развиваться методом проб и ошибок. Для этого в Uber создали POET — своеобразный тренировочный лагерь для ботов. Термин «бот» в данном случае используется условно, поскольку боты POET имеют мало общего с привычными нам ботами, например, в играх. Это скорее агенты. Система создаёт полосы препятствий, оценивает способности ботов-агентов и назначает им задачи без участия человека. Они выполняют их шаг за шагом и постепенно становятся умнее. Идеологически такой подход развивает идею обучения с подкреплением (англ. reinforcement learning). Это такой метод машинного обучения, при котором система взаимодействует не с «учителем», а со средой. Особенность проекта POET в том, что система теоретически способна бесконечно учиться ставить себе задачи, всё более и более сложные, и сама же обучаться их решать. Исследователи считают, что идея бесконечного развития POET роднит проект с естественной эволюцией. Ведь это единственный из известных процессов, в результате которого развился единственный из известных интеллектов (человеческий).

Тренировка ботов в виртуальной среде POET

Кажется, что боты-агенты POET отстают от своих собратьев. Боты, управляемые человеком, давно играют в логическую игру Go, изучают свёртываемость белка и находят признаки рака. А боты POET едва ли умеют ходить! Но ключевая идея здесь в том, что алгоритм сам учится ставить ботам-агентам задачи, а они, в свою очередь, учатся их решать без помощи людей.

Руй Ванг считает, что это поистине революционный способ создания нового, действительно умного искусственного интеллекта. Эти роботы должны стать ещё полезнее, чем те, что созданы под контролем человека.

Идею предоставить ИИ возможность самому себя бесконечно обучать, копируя естественную эволюцию, поддерживает Джефф Клун — сотрудник центра OpenAI. Он считает, что ИИ надо дать свободу: «Снять оковы и уйти с пути». Только в этом случае можно рассчитывать, что машины сравняются с человеком по интеллекту или смогут его превзойти.

Идея Клуна входит в ОИИ (AGI) — концепцию общего искусственного интеллекта. Она вызывает массу споров в современной науке. Её сторонники утверждают, что можно создать подобный человеческому разум, который сможет планировать свои действия, обучаться, общаться на естественном языке и обладать самосознанием.

Имитируем эволюцию

Идею сходства предложенного проектом POET подхода с эволюцией подтверждает опыт OpenAI. Три года назад компания разработала ботов, которые учились играть в прятки в виртуальной среде. Их разбивали по парам: одни искали, а другие прятались за подвижными препятствиями. Когда ботам разрешили учиться самостоятельно, они стали исследовать виртуальный мир так, как учёные совсем не ожидали. Использовали сбои в интерфейсе, чтобы перепрыгивать стены, и проходили сквозь них.

Подобные эксперименты говорят, что ИИ может прийти к решениям, о которых сами люди не додумаются. Компьютер способен изобрести новые типы алгоритмов и нейронных сетей. Или полностью отказаться от них — и придумать собственные способы обучения.

Клун напоминает, что интеллект возник из простых начал: «Ваш мозг создал простой алгоритм эволюции Дарвина. При этом именно ваш мозг — самый интеллектуальный алгоритм обучения, который известен во Вселенной». Почему бы не воспроизвести алгоритм его создания? Возможно это проще, чем создать сам интеллект!

Читайте также:  Графические способы решения алгебраических задач

Исследователи двигаются в эту сторону. Создают машины, которые учатся нескольким вещам сразу и справляются с неожиданными ситуациями. Многие считают, что это и есть лучший путь к созданию общего искусственного интеллекта. «Можно запустить алгоритм, который не обладает серьёзным интеллектом изначально. И наблюдать, как он умнеет на глазах — вплоть до AGI», — говорит Джефф Клун.

Существует общий термин «сильный искусственный интеллект» (Strong AI), некоторые эксперты считают, что в это понятие входит не только общий искусственный интеллект (AGI), но и искусственный сверхинтеллект (ASI). Это такой искусственный разум, который не только обладает самосознанием и в целом не уступает человеческому, но и принципиально превосходит его в некоторых областях. Известным примером из массовой культуры такого «сильного» искусственного интеллекта является HAL 9000 из романа «2001: Космическая одиссея» Артура Кларка.

И даже если AGI никогда не изобретут, подход самообучения всё равно достоин внимания, считает Хевен. Его собеседник Джефф Клун говорит, что миру от ИИ нужно явно больше, чем создание ботов для игры в GO. Умная машина должна сама ставить задачи, решать их, а затем придумывать новые. Она может научиться ходить, играть в классики, а затем, может быть, и играть в логические игры. Но развитие на этом точно не закончится. «Система может обновляться постоянно, у неё просто нет границ», — говорит Джефф Клун.

Как создать мозг

Чтобы ответить на этот вопрос, автор обращается к понятию нейронных сетей. Они состоят из нескольких слоёв искусственных нейронов, которые закодированы в программном обеспечении. Каждый из этих слоёв может быть связан с другим. Здесь можно экспериментировать: новые комбинации часто приводят к открытиям.

Нейронные сети создаются людьми — методом проб и ошибок. Изначально люди не имеют чёткого представления о том, что работает, а что нет. Нет гарантии, что учёные найдут лучшее решение. Именно поэтому актуальна автоматизация. Самый распространённый её способ — позволить ИИ самому создавать для себя схемы, тестировать их и выбирать лучшие. Этот метод получил название NAS — поиск нейронной архитектуры.

Хевен знакомит нас с Эстебаном Реалом — инженером Google. Он использовал NAS, чтобы создать нейросеть, которая распознаёт изображения. В итоге она превзошла лучшие сети, созданные человеком. Эта система стала частью AutoML — процесса автоматизации применения машинного обучения. AutoML позволяет быстрее и проще создавать решения и модели. Они, в свою очередь, часто оказываются эффективнее моделей ML, созданных вручную. AutoML от Google cегодня открыта для всех: её используют компании по всему миру.

В Google пошли ещё дальше — создали систему Google AutoML Zero, которая разрабатывает искусственный интеллект с нуля. На старте ей задают только базовые математические концепции. Результат работы поразил. Так, к примеру, система самостоятельно пришла к использованию алгоритма градиентного спуска, который часто используется разработчиками при обучении нейронных сетей. «Я был очень удивлён, — говорит Реал. — Это очень простой алгоритм, он занимает ровно шесть строк кода, но работает именно так, как нужно».

Как обучить искусственный интеллект

Искусственный мозг работает не так, как человеческий. Человеческий адаптируется к новым условиям и задачам. А машинный может сбиться, даже если условия меняются совсем чуть-чуть. Автор полагает, что современному ИИ не хватает гибкости.

Но как сделать ИИ гибким? Лучший способ — дать ему право решать проблемы самому. Так считает Джейн Ван, исследователь лондонского центра DeepMind. Задача учёных — не только натаскивать ИИ на конкретные задачи, но и научить решать эти задачи новыми, нестандартными способами, которые предложит сама система.

Как это можно сделать? Уилл Хевен выделяет два подхода к созданию автоматических алгоритмов обучения. Первый, не сговариваясь, придумали в двух центрах — DeepMind и OpenAI. Суть в использовании рекуррентных нейронных сетей. Их активация аналогична активации нейронов в голове — нейросети, подобно мозгу, начинают самостоятельно создавать алгоритмы. Они учатся самостоятельно. И некоторые из них уже работают лучше, чем те, что созданы человеком.

Второй подход придумала Челси Финн и её коллеги из Калифорнийского университета в Беркли. Его назвали метаобучением. В нём используются два Machine-Learning-процесса, один из которых вложен в другой. Как это работает: первый процесс обучается на готовых данных, затем внешняя модель изучает полученные им навыки — например, умение идентифицировать изображения — и определяет, как можно улучшить его производительность.

Автор проводит параллель: представьте школьного инспектора, который руководит учителями. Каждый предлагает ему разные методы обучения. Инспектор проверяет, какие методы больше помогают в обучении, утверждает их или вносит свои коррективы.

«Если мы даём ИИ возможность создавать себя, надо позволить ему создавать собственные школы и учебники», — говорит Уилл Дуглас Хевен.

Пытаться добиться успеха — бесполезно

Вернёмся к системе POET, о которой сказали в начале статьи. По словам Руй Вана, в её основе лежит парадокс.

«Если вы хотите, чтобы она решила конкретную проблему, у вас ничего не выйдет. Если нет изначальных ожиданий — шансов на успех больше. Мы получаем удивительные результаты от совершенно случайных процессов. Повторить их специально просто не получится», — комментирует разработчик.

POET выбирает хаотичные, неочевидные пути к успеху. Но они работают. Агенты самостоятельно решают проблемы, после этого становятся сильнее, умнее и получают новые знания. И, главное, этот процесс бесконечен — он будет идти постоянно.

Читайте также:  Как получить iphone способы

Клун и Ван считают, что это серьёзное открытие. Сейчас они пытаются выяснить, поможет ли оно в создании новых, действительно умных систем. И хотят понять, можно ли двигаться к ОИИ без определённой стратегии.

Есть ещё одна важная вещь — не стоит забывать о рисках. Автор задаётся вопросом, сможем ли мы контролировать рост ИИ. Некоторые собеседники не видят угроз — восстание машин остаётся в мире фэнтези.

Тем не менее Джейн Ван из DeepMind считает, что автономность риск всё же несёт: «Мы хотим дать ИИ свободу. Но надо помнить, что он может выйти из-под контроля. Это и страшно, и захватывающе одновременно».

обложка: Dana Moskvina / Skillbox Media

Источник

Как создать искусственный интеллект?

А ведь действительно, именно желание создать совершенный искусственный интеллект, будь то игровая модель или мобильная программа, сподвигла на путь программиста многих из нас. Проблема в том, что за тоннами учебного материала и суровой действительностью заказчиков, это самое желание было заменено простым стремлением к саморазвитию. Для тех, кто так и не приступил к исполнению детской мечты, далее краткий путеводитель по созданию настоящего искусственного разума.

Стадия 1. Разочарование

Когда мы говорим о создании хотя бы простых ботов, глаза наполняются блеском, а в голове мелькают сотни идей, что он должен уметь делать. Однако, когда дело доходит до реализации, оказывается, что ключом к разгадке реальной модели поведения является. математика. Если быть немного конкретнее, то вот список её разделов, которые необходимо проштудировать хотя бы в формате университетского образования:

Теория вероятностей и математическая статистика.

Это тот научный плацдарм, на котором будут строится ваше дальнейшее программирование. Без знания и понимания этой теории все задумки быстро разобьются о взаимодействие с человеком, ведь искусственный разум на самом деле не больше, чем набор формул.

Стадия 2. Принятие

Когда спесь немного сбита студенческой литературой, можно приступать к изучению языков. Бросаться на LISP или другие функциональные языки пока не стоит, для начала надо научиться работать с переменными и однозначными состояниями. Как для быстрого изучения, так и дальнейшего развития прекрасно подойдёт Python, но в целом можно взять за основу любой язык, имеющий соответствующие библиотеки.

Стадия 3. Развитие

Теперь переходим непосредственно к теории ИИ. Их условно можно разделить на 3 категории:

Слабый ИИ – боты, которых мы видим в компьютерных играх, или простые подручные помощники, вроде Siri. Они или выполняют узкоспециализированные задачи или являются незначительным комплексом таковых, а любая непредсказуемость взаимодействия ставит их в тупик.

Сильный ИИ – это машины, интеллект которых сопоставим с человеческим мозгом. На сегодняшний день нет реальных представителей этого класса, но компьютеры, вроде Watson очень близки к достижению этой цели.

Совершенные ИИ – будущее, машинный мозг, который превзойдёт наши возможности. Именно об опасности таких разработок предупреждают Стивен Хоккинг, Элон Маск и кинофраншиза «Терминатор».

Естественно, начинать следует с самых простых ботов. Для этого вспомните старую-добрую игру «Крестики-нолики» при использовании поля 3х3 и постарайтесь выяснить для себя основные алгоритмы действий: вероятность победы при безошибочных действиях, наиболее удачные места на поле для расположения фигуры, необходимость сводить игру к ничьей и так далее.

Сыграв несколько десятков партий и анализируя собственные действия, вы наверняка сможете выделить все важные аспекты и переписать их в машинный код. Если нет, то продолжайте думать, а эта ссылка здесь полежит на всякий случай.

К слову, если вы всё-таки взялись за язык Python, то создать довольно простого бота можно обратившись к этому подробному мануалу. Для других языков, таких как C++ или Java, вам также не составит труда найти пошаговые материалы. Почувствовав, что за созданием ИИ нет ничего сверхъестественного, вы сможете смело закрыть браузер и приступить к личным экспериментам.

Стадия 4. Азарт

Теперь, когда дело сдвинулось с мёртвой точки, вам наверняка хочется создать что-то более серьёзное. В этом вам поможет ряд следующих ресурсов:

Как вы поняли даже из названий, это API, которые позволят без лишних затрат времени создать некоторое подобие серьёзного ИИ.

Стадия 5. Работа

Теперь же, когда вы уже вполне ясно представляете, как ИИ создавать и чем при этом пользоваться, пора выводить свои знания на новый уровень. Во-первых, для этого потребуется изучение дисциплины, которое носит название «Машинное обучение». Во-вторых, необходимо научиться работать с соответствующими библиотеками выбранного языка программирования. Для рассматриваемого нами Python это Scikit-learn, NLTK, SciPy, PyBrain и Nump. В-третьих, в развитии никуда не обойтись от функционального программирования. Ну и самое главное, вы теперь сможете читать литературу о ИИ с полным пониманием дела:

И да, вся или почти вся литература по данной тематике представлена на иностранном языке, поэтому если хотите заниматься созданием ИИ профессионально необходимо подтянуть свой английский до технического уровня. Если вы только начинаете путь к мечте, советуем записаться на бесплатный двухчасовой интенсив по основам программирования.

В остальном, ваше дальнейшее развитие будет зависеть лишь от практики и желания усложнять алгоритмы. Но будьте осторожны: возможно совершенный искусственный разум опасен для человечества?

Читайте также:  Способы оптимизации налогов реферат

Освоить востребованную профессию в Data Science можно всего за полтора года на курсах GeekBrains. После учёбы вы сможете работать по специальностям Data Scientist, Data Analyst, Machine Learning, Engineer Computer Vision-специалист или NLP-специалист.

На этой неделе вы могли прочитать крайне мотивирующей кейс от Валерия Турова, где он рассказал об одной из своих целей, которая привела в профессию – желанию познать принцип работы и научиться создавать самому игровых ботов.

А ведь действительно, именно желание создать совершенный искусственный интеллект, будь то игровая модель или мобильная программа, сподвигла на путь программиста многих из нас. Проблема в том, что за тоннами учебного материала и суровой действительностью заказчиков, это самое желание было заменено простым стремлением к саморазвитию. Для тех, кто так и не приступил к исполнению детской мечты, далее краткий путеводитель по созданию настоящего искусственного разума.

Стадия 1. Разочарование

Когда мы говорим о создании хотя бы простых ботов, глаза наполняются блеском, а в голове мелькают сотни идей, что он должен уметь делать. Однако, когда дело доходит до реализации, оказывается, что ключом к разгадке реальной модели поведения является. математика. Если быть немного конкретнее, то вот список её разделов, которые необходимо проштудировать хотя бы в формате университетского образования:

Теория вероятностей и математическая статистика.

Это тот научный плацдарм, на котором будут строится ваше дальнейшее программирование. Без знания и понимания этой теории все задумки быстро разобьются о взаимодействие с человеком, ведь искусственный разум на самом деле не больше, чем набор формул.

Стадия 2. Принятие

Когда спесь немного сбита студенческой литературой, можно приступать к изучению языков. Бросаться на LISP или другие функциональные языки пока не стоит, для начала надо научиться работать с переменными и однозначными состояниями. Как для быстрого изучения, так и дальнейшего развития прекрасно подойдёт Python, но в целом можно взять за основу любой язык, имеющий соответствующие библиотеки.

Стадия 3. Развитие

Теперь переходим непосредственно к теории ИИ. Их условно можно разделить на 3 категории:

Слабый ИИ – боты, которых мы видим в компьютерных играх, или простые подручные помощники, вроде Siri. Они или выполняют узкоспециализированные задачи или являются незначительным комплексом таковых, а любая непредсказуемость взаимодействия ставит их в тупик.

Сильный ИИ – это машины, интеллект которых сопоставим с человеческим мозгом. На сегодняшний день нет реальных представителей этого класса, но компьютеры, вроде Watson очень близки к достижению этой цели.

Совершенные ИИ – будущее, машинный мозг, который превзойдёт наши возможности. Именно об опасности таких разработок предупреждают Стивен Хоккинг, Элон Маск и кинофраншиза «Терминатор».

Естественно, начинать следует с самых простых ботов. Для этого вспомните старую-добрую игру «Крестики-нолики» при использовании поля 3х3 и постарайтесь выяснить для себя основные алгоритмы действий: вероятность победы при безошибочных действиях, наиболее удачные места на поле для расположения фигуры, необходимость сводить игру к ничьей и так далее.

Сыграв несколько десятков партий и анализируя собственные действия, вы наверняка сможете выделить все важные аспекты и переписать их в машинный код. Если нет, то продолжайте думать, а эта ссылка здесь полежит на всякий случай.

К слову, если вы всё-таки взялись за язык Python, то создать довольно простого бота можно обратившись к этому подробному мануалу. Для других языков, таких как C++ или Java, вам также не составит труда найти пошаговые материалы. Почувствовав, что за созданием ИИ нет ничего сверхъестественного, вы сможете смело закрыть браузер и приступить к личным экспериментам.

Стадия 4. Азарт

Теперь, когда дело сдвинулось с мёртвой точки, вам наверняка хочется создать что-то более серьёзное. В этом вам поможет ряд следующих ресурсов:

Как вы поняли даже из названий, это API, которые позволят без лишних затрат времени создать некоторое подобие серьёзного ИИ.

Стадия 5. Работа

Теперь же, когда вы уже вполне ясно представляете, как ИИ создавать и чем при этом пользоваться, пора выводить свои знания на новый уровень. Во-первых, для этого потребуется изучение дисциплины, которое носит название «Машинное обучение». Во-вторых, необходимо научиться работать с соответствующими библиотеками выбранного языка программирования. Для рассматриваемого нами Python это Scikit-learn, NLTK, SciPy, PyBrain и Nump. В-третьих, в развитии никуда не обойтись от функционального программирования. Ну и самое главное, вы теперь сможете читать литературу о ИИ с полным пониманием дела:

И да, вся или почти вся литература по данной тематике представлена на иностранном языке, поэтому если хотите заниматься созданием ИИ профессионально необходимо подтянуть свой английский до технического уровня. Если вы только начинаете путь к мечте, советуем записаться на бесплатный двухчасовой интенсив по основам программирования.

В остальном, ваше дальнейшее развитие будет зависеть лишь от практики и желания усложнять алгоритмы. Но будьте осторожны: возможно совершенный искусственный разум опасен для человечества?

Освоить востребованную профессию в Data Science можно всего за полтора года на курсах GeekBrains. После учёбы вы сможете работать по специальностям Data Scientist, Data Analyst, Machine Learning, Engineer Computer Vision-специалист или NLP-специалист.

Источник

Оцените статью
Разные способы