Искусственный интеллект способы обучения

Методы искусственного интеллекта

В данной статье хотелось бы подробно поговорить о таком понятии, как методы искусственного интеллекта. Для того, чтобы понятным языком изложить суть данного понятия, сначала мы должны разобраться с понятием «метода», как такового.

Что такое метод искусственного интеллекта?

У термина «метод» есть множество определений. Так как сфера искусственного интеллекта, в основном, подразумевает знания в области математики, программирования и информационных технологий, то метод, в нашем случае, — путь познания или способ познания какой-либо предметной области, способ достижения цели. А метод искусственного интеллекта — это способ, а фактически, — алгоритм решения какой-либо задачи.

Существует большое количество направлений развития искусственного интеллекта. В рамках этих направлений есть различные методы, которые могут применяться по отдельности или в группах для решения задач, стоящих перед наукой, промышленностью, экономикой, медициной и другими областями.

Классификация методов искусственного интеллекта (ИИ)

Есть разные мнения о том, как классифицировать методы ИИ. Мы предлагаем следующую классификацию, которая состоит из пяти пунктов:

  1. Искусственные нейронные сети
  2. Нечеткая логика (нечеткие множества и мягкие вычисления)
  3. Системы, основанные на знаниях (экспертные системы)
  4. Эволюционное моделирование (генетические алгоритмы, многоагентные системы)
  5. Machine Learning (Data Mining и анализ данныхи, поиск закономерностей в хранилищах данных)

Теперь давайте простыми словами расскажем, что представляет собой каждый метод.

Искусственные нейронные сети

Искусственная нейронная сеть — это преимущественно математический аппарат, хотя иногда в различных парадигмах нейросетей встречаются элементы логики.

Нейронная сеть — математическая модель, прототипом которой служит центральная нервная система человека или животного.

Данный метод ИИ применяется в задачах распознавания образов, прогнозирования, классификации, кластеризации и оптимизации.

Нечёткая логика, нечёткие множества и мягкие вычисления

Нечёткая логика, теория нечётких множеств, нечёткие рассуждения, мягкие вычисления — всё это близкие или тесно связанные между собой понятия, относящиеся к более высокому уровню работы центральной нервной системы, нежели искусственные нейронные сети. Методы нечеткой логики используются в экпертных системах, системах управления объектом.

Нечёткая логика в большей степени связана с качественной оценкой анализируемых процессов и явлений и принятием решений на основе этой качественной оценки.

Эволюционное или многоагентное моделирование

В рамках данной группы методов рассматривается концепция не индивидуального, а коллективного интеллекта.

Эволюционное моделирование целесообразно применять тогда, когда пространство поиска решения настолько большое и сложно устроенное, что традиционные и более простые методы просто неспособны выполнить глобальный поиск решения или способны, но на это потребуется неприемлемо много времени.

Экспертные системы. Поддержка принятия решений

Экспертная система — это искусственный аналог лица, принимающего решения, или, как минимум, эксперта-консультанта предметной области.

Структура и логико-математический аппарат экспертной системы определяются, в первую очередь, её назначением и предметной областью. Сами решения, предлагаемые системой, могут вырабатываться с использованием различных механизмов вывода. Наиболее близкий аналог человеческому механизму вывода — это аппарат нечёткой логики и теории нечётких множеств.

Читайте также:  Способы сбережения денежных средств наиболее предпочтительные

Machine Learning, Data Mining, Data Science

Machine Learning (машинное обучение) — это целый класс методов искусственного интеллекта. Все они подразумевают решение задач не напрямую, а путем предварительного обучения как до, так и в процессе принятия решения.

Data mining. Данный термин введён Григорием Пятецким-Шапиро в 1989 году

По сути — это собирательное название, которое применяется для обозначения целой группы методов обнаружения определенных закономерностей в общем объеме данных, которые могут получены в различных сферах человеческой деятельности. Например, методы Data Mining могут быть использованы для больших данных (Big Data), накопленных в розничных продажах, для подтверждения каких-либо гипотез и принятия управленческих решений.

Выводы

Мы рассмотрели 5 основных групп методов искусственного интеллекта согласно нашей классификации и дали небольшие пояснения касательно каждого из них.

В других постах мы рассмотрим каждый метод более подробно.

Источник

Искусственный интеллект, машинное обучение и глубокое обучение: в чём разница

Компьютер запросто диагностирует рак, управляет автомобилем и умеет обучаться. Почему же машины пока не захватили власть над человечеством?

Мы пользуемся Google-картами, позволяем сайтам подбирать для нас интересные фильмы и советовать, что купить. И, в общем-то, слышали, что под капотом всех этих умных вещей — искусственный интеллект, машинное обучение и deep learning. Но сможете ли вы с ходу отличить одно от другого? Разбираемся на примерах.

Что такое искусственный интеллект

Искусственный интеллект (англ. artificial intelligence) — это способность компьютера обучаться, принимать решения и выполнять действия, свойственные человеческому интеллекту.

Кроме того, ИИ — это наука на стыке математики, биологии, психологии, кибернетики и ещё кучи всего. Она изучает технологии, которые позволяют человеку писать «интеллектуальные» программы и учить компьютеры решать задачи самостоятельно. Главная задача ИИ — понять, как устроен человеческий интеллект, и смоделировать его.

В области искусственного интеллекта есть подразделы. К ним относятся робототехника, наука о компьютерном зрении, обработка естественного языка и машинное обучение.

Хотите знать, может ли машина мыслить и чувствовать как человек? Приходите на курс «Философия искусственного интеллекта». Здесь вы получите новые знания об ИИ, обсудите актуальные вопросы с преподавателями и однокурсниками и прокачаете навык публичных выступлений.

Пишет про digital и машинное обучение для корпоративных блогов. Топ-автор в категории «Искусственный интеллект» на Medium. Kaggle-эксперт.

Каким бывает искусственный интеллект

Исследователи обычно делят ИИ на три группы:

Слабый ИИ (Weak, или Narrow AI)

Слабый интеллект — тот, что нам уже удалось создать. Такой ИИ способен решать определённую задачу. Зачастую даже лучше, чем человек. Например, как Deep Blue — компьютерная программа, которая обыграла Гарри Каспарова в шахматы ещё в 1996 году. Но такая Deep Blue не умеет делать ничего другого и никогда этому не научится. Слабый ИИ используют в медицине, логистике, банковском деле, бизнесе:

  • Искусственный интеллект от Google смог опередить опытных врачей в точности диагностики рака молочной железы. Чтобы это сделать, использовали сотни тысяч результатов скрининга . По данным Американского онкологического общества, врачи не диагностируют рак примерно в 20% случаев и часто ставят ложный диагноз. ИИ не только поставил более точный диагноз, чем врачи, — на 9,4%, — но и чаще указывал на болезнь там, где онкологи не сумели её распознать.
  • Amazon — одна из ведущих ИИ-компаний в мире — разработала систему Fraud Detector. Она помогает бороться с онлайн-мошенничеством, из-за которого люди и компании теряют миллионы долларов. Алгоритм следит за действиями пользователей в реальном времени, находит их и сообщает об аномалиях — например, помечает подозрительные заказы, которые нужно проверить до совершения платежа. Это можно использовать в банках, онлайн-магазинах и крупных компаниях.
  • Беспилотные автомобили Waymo благодаря машинному обучению способны передвигаться по реальным дорогам без вреда для пассажиров и прохожих. Кстати, такие машины — правда, от компании Toyota — будут использовать на следующих Олимпийских играх в Японии для транспортировки гостей.
Читайте также:  Способы измерения экспозиции с помощью экспонометра замер по интегральной яркости

Это несколько примеров, в реальности применений намного больше.

Сильный ИИ (Strong, или General AI)

Как выглядел бы сильный искусственный интеллект, можно увидеть в игре Detroit: Become Human.

Во вселенной Detroit роботы способны учиться, мыслить, чувствовать, осознавать себя и принимать решения. Одним словом, становятся похожи на человека. А в обычной жизни ближе всего к General AI чат-боты и виртуальные ассистенты, которые имитируют человеческое общение. Здесь ключевое слово — имитируют. Siri или Алиса не думают — и неспособны принимать решения в ситуациях, которым их не обучили. Сильный искусственный интеллект пока остаётся мечтой.

Суперинтеллект (Superintelligence)

Мы не только не создали суперинтеллект, но и не имеем пока что ни малейшего представления, как это сделать и можно ли вообще. Это не просто умные машины, а компьютеры, которые во всём превосходят людей. Проще говоря, что-то из области фантастики.

Машинное обучение: как учится ИИ

Машинное обучение (англ. machine learning) — это один из разделов науки об ИИ. Здесь используются алгоритмы для анализа данных, получения выводов или предсказаний в отношении чего-либо. Вместо того чтобы кодировать набор команд вручную, машину обучают и дают ей возможность научиться выполнять поставленную задачу самостоятельно.

Чтобы машина могла принимать решения, необходимы три вещи:

  • Алгоритм — специальная программа, которая говорит компьютеру, что делать и откуда брать данные. Например, мы можем написать программу, которая сортирует пиццу: «Маргарита», с грибами, с колбасой.
  • Набор данных — примеры, на которых машина тренируется. Это могут быть картинки, видео, текст — что угодно. В нашем случае понадобятся тысячи фотографий различных пицц. Чем больше примеров, тем богаче опыт, — совсем как у людей.
  • Признаки — на что компьютеру смотреть при принятии решения? Если мы занимаемся машинным обучением с учителем, то вручную выделяем грибочки и кусочки колбасы. При обучении без учителя — сливаем все данные в программу и даём компьютеру самому разобраться, где что, а при необходимости корректируем.

В машинном обучении много разных алгоритмов. Один из самых простых — линейная регрессия. Её применяют, если есть линейная зависимость между переменными. Пример: чем больше сумма заказа, тем больше вы оставите чаевых. По имеющимся данным можно предсказать сумму чаевых в будущем. В общем-то, простая математика.

Есть байесовские алгоритмы. В их основе применение теоремы Байеса и теории вероятности. Эти алгоритмы используют для работы с текстовыми документами — например, для спам-фильтрации. Программе нужно дать наборы данных по категориям «спам» и «не спам». Дальше алгоритм будет самостоятельно оценивать вероятность того, что слова «Бесплатные туры для пенсионеров» и «Закажи маме тур, пожалуйста» относятся к той или иной категории.

Читайте также:  Способы организации деятельности учащихся деятельность педагога

А ещё есть нейронные сети, о них вы наверняка слышали. Они относятся к методам глубокого машинного обучения, и об этом чуть подробнее.

Deep learning: глубокое обучение для разных целей

Глубокое обучение — подраздел машинного обучения. Алгоритмам глубокого обучения не нужен учитель, только заранее подготовленные (размеченные) данные.

Самый популярный, но не единственный метод глубокого обучения, — искусственные нейронные сети (ИНС). Они больше всего похожи на то, как устроен человеческий мозг.

Нейронные сети — это набор связанных единиц (нейронов) и нейронных связей (синапсов). Каждое соединение передаёт сигнал от одного нейрона к другому, как в мозге человека. Обычно нейроны и синапсы организованы в слои, чтобы обрабатывать информацию. Первый слой нейросети — это вход, который получает данные. Последний — выход, результат работы. Например, несколько категорий, к одной из которых мы просим отнести то, что было отправлено на вход. И между ними — скрытые слои, которые выполняют преобразование.

По сути, скрытые слои выполняют какую-то математическую функцию. Мы её не задаём, программа сама учится выводить результат. Можно научить нейросеть классифицировать изображения или находить на изображении нужный объект. Помните, как reCAPTCHA просит найти все изображения грузовиков или светофоров, чтобы доказать, что вы не робот? Нейронная сеть выполняет то же самое, что и наш мозг, — видит знакомые элементы и понимает: «О, кажется, это грузовик!»

А ещё нейросети могут генерировать объекты: музыку, тексты, изображения. Например, компания Botnik скормила нейросети все книги про Гарри Поттера и попросила написать свою. Получился «Гарри Поттер и портрет того, что выглядит как огромная куча пепла». Звучит немного странно, но как минимум с точки зрения грамматики это сочинение имеет смысл.

Сегодня нейронные сети могут применяться практически для любой задачи. Например, при диагностике рака, прогнозировании продаж, идентификации лиц в системах безопасности, машинных переводах, обработке фотографий и музыки.

Чтобы обучить нейросеть, нужны гигантские наборы тщательно отобранных данных. Например, для распознавания сортов огурцов нужно обработать 1,5 млн разных фотографий. Не получится просто слить рандомные картинки или текст из интернета — их нужно подготовить: привести к одному формату и удалить то, что точно не подходит (например, мы классифицируем пиццу, а в наборе данных у нас фото грузовика). На разметку данных — подготовку и систематизацию — уходят тысячи человеко-часов.

Чтобы создать новую нейросеть, требуется задать алгоритм, прогнать через него все данные, протестировать и неоднократно оптимизировать. Это сложно и долго. Поэтому иногда проще воспользоваться более простыми алгоритмами — например, регрессией.

Подведём итоги

Искусственный интеллект — одновременно и наука, которая помогает создавать «умные» машины, и способность компьютера обучаться и принимать решения.

Машинное обучение — одна из областей искусственного интеллекта. МО использует алгоритмы для анализа данных и получения выводов.

А глубокое обучение — лишь один из методов машинного обучения, в рамках которого компьютер учится без учителя подспудно, с помощью данных.

Если чувствуете, что вас привлекает проектирование машинного интеллекта, продолжить образование можно на нашем курсе. Вы научитесь писать алгоритмы, собирать и сортировать данные и получите престижную профессию Data Scientist — специалист по машинному обучению.

Источник

Оцените статью
Разные способы