- Творческие проекты и работы учащихся
- Подробнее о проекте:
- Оглавление
- Введение
- Основные понятия теории уравнений и неравенств
- Методы решения уравнений и неравенств
- Метод разложения на множители
- Метод замены переменной
- Метод решения уравнений с помощью теоремы Виета
- Нестандартные методы решения алгебраических уравнений и неравенств. Метод рационализации
- Учёт ОДЗ
- Метод мажорант (оценки)
- Использование графиков
- Угадывание корня уравнения
- Разработка интерактивного тренажера «Нестандартные методы решения уравнений и неравенств»
- Нестандартные приемы решения уравнений и задач. элективный курс по алгебре (11 класс) по теме
- Скачать:
- Предварительный просмотр:
Творческие проекты и работы учащихся
В процессе работы над индивидуальным проектом по математике «Нестандартные методы решения уравнений и неравенств» ученицей 10 класса школы была поставлена и реализована цель изучить новые методы решения уравнений и неравенств. Каждый из методов был описан и продемонстрирован отдельно.
Подробнее о проекте:
В готовом творческом и исследовательском проекте по математике «Нестандартные методы решения уравнений и неравенств» учащейся приведены характеристики таких методов решения уравнений, как метод разложения на множители, метод замены переменной, метод решения уравнений с помощью теоремы Виета и метод интервалов, а также продемонстрированы нестандартные методы решения алгебраических уравнений и неравенств, метод рационализации, учёт ОДЗ и метод мажорант.
Оглавление
Введение
1. Теория уравнений и неравенств.
1.1 Основные понятия теории уравнений и неравенств.
1.2 Методы решения уравнений и неравенств.
1.2.1 Метод разложения на множители.
1.2.2 Метод замены переменной.
1.2.3 Метод решения уравнений с помощью теоремы Виета.
1.2.4 Метод интервалов.
2. Нестандартные методы решения алгебраических уравнений и неравенств.
2.1 Метод рационализации.
2.2 Учёт ОДЗ.
2.3 Метод мажорант (оценки).
2.4 Использование свойств функций.
2.4.1 Использование ОДЗ.
2.4.2 Использование монотонности функции.
2.4.3 Использование графиков.
2.5 Некоторые искусственные способы решения алгебраических уравнений.
2.5.1 Угадывание корня уравнения.
3. Разработка интерактивного тренажера «Нестандартные методы решения уравнений и неравенств».
3.1 Анализ и характеристика сетевого сервиса, с помощью которого будет создаваться продукт.
3.2 Создание контента тренажёра.
3.3 Описание созданного продукта.
3.4 Апробация продукта.
Заключение
Список литературы
Введение
Объектом исследования являются уравнения и неравенства.
Предмет исследования: некоторые нестандартные методы решения уравнений и неравенств.
В начале работы над проектом была сформулирована гипотеза: благодаря новым методам решения уравнений и неравенств, удастся сократить количество шагов решения в алгоритме и снизить вероятность допущения ошибки. Исходя из этого вывода, была поставлена цель проекта: изучить новые методы решения уравнений и неравенств.
Продуктом проекта были выбраны дидактические материалы с алгоритмом решения уравнений и неравенств новыми методами и тренажёры для отработки заданий подобного типа. Для продуктивного и удобного использования тренажера необходимо установить критерии оценки продукта проекта:понятный и удобный интерфейс, наличие мобильной версии, возможность использования русского языка, возможность бесплатного использования ресурсов сетевого сервиса при создании и дальнейшем использовании тренажера, тиражируемость (возможность быстрого распространения (с помощью ссылок, QR-кодов и т.п.) и использования).
В процессе создания проекта были сформулированы некоторые задачи:
- Изучить всевозможные источники информации по данной теме, структурировать собранную информацию
- Провести опрос
- Разработать алгоритмы решения уравнений и неравенств определенным (нестандартным) способом
- Анализ имеющихся тренажёров, подобрать задания, решаемые нестандартным способом, решить их
- Создать тренажёр
- Апробировать продукт
- Провести опрос об эффективности продукта
- Собрать статистику
- Распространить продукт
Методы исследования, используемые при работе над проектом: анализ, обобщение, синтез, классификация, систематизация, сравнение, прототипирование.
Научная новизна: разработаны уникальные дидактические материалы
Теоретическая значимость: расширение представления о некоторых методах решения уравнений и неравенств.
Практическая значимость: продукт проекта может быть использован учениками при подготовке к ЕГЭ, а также учителями математики.
Социальная значимость: проект может помочь ученикам 9-11 классов при подготовке к экзамену.
Основные понятия теории уравнений и неравенств
Уравнение – равенство, содержащее в себе переменную, значение которой требуется найти.
Корень (решение) уравнения – это значение переменной, при котором уравнение обращается в верное числовое равенство.
Решить уравнение — найти его корни или доказать, что корней нет.
Неравенство – два числа или математических выражения, соединенных одним из знаков: , ≤, ≥.
Основные свойства уравнений:
- Любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.
- Обе части уравнения можно умножить или разделить на одно и то же число, не равное нулю.
Решение неравенства – то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство.
Решить неравенство – найти все его решения или установить, что их нет.
Методы решения уравнений и неравенств
Теперь, после перечисления основных понятий, следует вспомнить известные нам из школьной программы способы решения уравнений и неравенств.
Метод разложения на множители
Для разложения на множители используют формулы сокращённого умножения (ФСУ), вынесение общего множителя за скобку, способ группировки, деление многочлена на многочлен.
Суть данного метода в том, чтобы путем равносильных преобразований представить левую часть исходного уравнения, содержащую неизвестную величину в какой-либо степени, в виде произведения двух выражений, содержащих неизвестную величину в меньшей степени. При этом справа от знака равенства должен оказаться ноль.
Метод замены переменной
Цель данного метода в том, чтобы удачным образом заменить сложное выражение, содержащее неизвестную величину, новой переменной, в результате чего уравнение принимает более простой вид. Далее полученное уравнение решается относительно новой переменной, после чего происходит возврат к исходной переменной.
Метод решения уравнений с помощью теоремы Виета
Важно. Не ко всем квадратным уравнениям имеет смысл использовать эту теорему. Применять теорему Виета имеет смысл только к приведённым квадратным уравнениям.
Приведенное квадратное уравнение – это уравнение, в котором старший коэффициент «a = 1». В общем виде приведенное квадратное уравнение выглядит следующим образом: х2 + px + q = 0. разница с обычным общим видом квадратного уравнения ax2 + bx + c = 0 в том, что в приведённом уравнении x2 + px + q = 0 коэффициент а = 1.
Теорема Виета для приведённых квадратных уравнений «x2 + px + q = 0» гласит что справедливо следующее:
x1 · x2 = q, где x1 и x2 — корни этого уравнения.
Нестандартные методы решения алгебраических уравнений и неравенств. Метод рационализации
Приведем алгоритм решения уравнений и неравенств методом рационализации:
- Нахождение ОДЗ уравнения/неравенства
- Привести данное неравенство к стандартному виду: слева дробь (или произведение), справа – ноль.
- Заменить выражения левой части на более простые, эквивалентные им по знаку.
- Решить полученное неравенство, например, методом интервалов.
Учёт ОДЗ
Иногда знание ОДЗ позволяет доказать, что уравнение (или неравенство) не имеет решений, а иногда позволяет найти решение уравнения (или неравенства) непосредственно подстановкой чисел из ОДЗ.
- Найти ОДЗ уравнения/неравенства.
- Подставить значение ОДЗ в исходное уравнение/неравенство, чтобы проверить, является ли оно корнем.
Метод мажорант (оценки)
Метод мажорант также называют методом оценки левой и правой частей, входящих в уравнения и неравенства.
Мажорантой данной функции f(х) на множестве Р, называется такое число М, что либо f(х) ≤ М для всех х ϵ Р, либо f(х) ≥ М для всех х ϵ Р.
Мажоранты многих элементарных функции известны. Их нетрудно указать, зная область значений функции.
- Определить монотонность и область определения функции (ООФ).
- Методом подбора найти корень уравнения/неравенства.
- Исходя из монотонности функции делаем вывод о количестве корней.
Использование графиков
При решении уравнений и неравенств иногда полезно рассмотреть эскиз графиков их правой и левой частей. Тогда этот эскиз графиков поможет выяснить, на какие множества надо разбить числовую ось, чтобы на каждом из них решение уравнения (или неравенства) было очевидно.
Обратим внимание, что эскиз графика лишь помогает найти решение, но писать, что из графика следует ответ, нельзя, ответ ещё надо обосновать.
- Определить ОДЗ уравнения/неравенства.
- Представить левую и правую части уравнения/неравенства как функции и построить их графики.
- По графику определить решение уравнения/неравенства.
- Доказать справедливость ответа.
Угадывание корня уравнения
Иногда внешний вид уравнения подсказывает, какое число является корнем уравнения.
- Методом подбора определить корень уравнения.
- Найти ОДЗ уравнения.
- Привести многочлен к стандартному виду.
- Определить остальные корни уравнения.
Разработка интерактивного тренажера «Нестандартные методы решения уравнений и неравенств»
В качестве продукта проекта был выбран интерактивный тренажер, который позволит практиковаться в решении уравнений и неравенств с помощью новых, нестандартных методов решения. Размещение тренажера на сетевой платформе позволит сделать данный продукт доступным для всех, кто хочет разобраться в этой теме.
Анализ и характеристика сетевого сервиса, с помощью которого будет создаваться продукт
При создании продукта были проанализированы следующие сетевые сервисы:
Платформы были проанализированы по критериям:
- Понятный и удобный интерфейс сайта
- Возможность составления разнотипных заданий, для создания интересного и разнообразного контента
- Наличие мобильной версии
- Возможность использования русского языка
- Возможность бесплатного использования ресурсов сетевого сервиса при создании и дальнейшем использовании тренажера
- Доступность (возможность быстрого распространения (с помощью ссылок, QR-кодов и т.п.) и использования)
- В данной таблице приведены результаты оценки сетевых сервисов по выбранным критериям:
Источник
Нестандартные приемы решения уравнений и задач.
элективный курс по алгебре (11 класс) по теме
В заданиях ЕГЭ по математике с развернутым ответом (часть С), олимпиадах, конкурсных экзаменах встречаются задачи с параметрами и модулями, задания, решаемые нестандартными методами. Появление таких заданий на экзаменах далеко не случайно, т.к. с их помощью проверяется техника владения формулами элементарной математики, методами решения уравнений и неравенств, умение выстраивать логическую цепочку рассуждений, уровень логического мышления учащегося и их математической культуры.Решение уравнений и неравенств с параметрами можно считать деятельностью близкой к исследовательской. Это обусловлено тем, что выбор метода решения, процесс решения, запись ответа предполагают определенный уровень сформированности умений наблюдать, сравнивать, анализировать, выдвигать и проверять гипотезу, обобщать полученные результаты. При решении их используются не только типовые алгоритмы, но и нестандартные методы, упрощающие решение. Анализ результатов ЕГЭ за несколько предыдущих лет показывает, что выпускники с большим трудом решают такие задания, а многие даже не приступают к ним. Рассматриваемый материал не входит в базовый уровень общеобразовательных классов, а в профильных рассматривается недостаточно.Программа курса предназначена для углубленного изучения данного вопроса и является развитием системы ранее приобретенных знаний.
Скачать:
Вложение | Размер |
---|---|
Углубленное изучение задач решаемых нестандартными методами | 48.43 КБ |
Предварительный просмотр:
Муниципальное бюджетное общеобразовательное учреждение
«Цнинская средняя общеобразовательная школа №2»
Тамбовский район Тамбовская область
методическим советом Директор школы___ Черникова С.В
Протокол №____ Приказ №____
от «___»_____2012г. от «___»_____2012г
курса платного дополнительного образования
«Нестандартные приемы решения уравнений и задач »
Одно из направлений модернизации математического образования, является обеспечение углубленного изучения предмета и подготовка учащихся к продолжению образования.
В заданиях ЕГЭ по математике с развернутым ответом (часть С), олимпиадах, конкурсных экзаменах встречаются задачи с параметрами и модулями, задания, решаемые нестандартными методами. Появление таких заданий на экзаменах далеко не случайно, т.к. с их помощью проверяется техника владения формулами элементарной математики, методами решения уравнений и неравенств, умение выстраивать логическую цепочку рассуждений, уровень логического мышления учащегося и их математической культуры.
Решение уравнений и неравенств с параметрами можно считать деятельностью близкой к исследовательской. Это обусловлено тем, что выбор метода решения, процесс решения, запись ответа предполагают определенный уровень сформированности умений наблюдать, сравнивать, анализировать, выдвигать и проверять гипотезу, обобщать полученные результаты. При решении их используются не только типовые алгоритмы, но и нестандартные методы, упрощающие решение.
Анализ результатов ЕГЭ за несколько предыдущих лет показывает, что выпускники с большим трудом решают такие задания, а многие даже не приступают к ним. Рассматриваемый материал не входит в базовый уровень общеобразовательных классов, а в профильных рассматривается недостаточно.
Программа курса предназначена для углубленного изучения данного вопроса и является развитием системы ранее приобретенных знаний. Углубление реализуется на базе обучения методам и приемам решения математических задач, требующих применения высокой логической и операционной культуры, развивающей научно-теоретическое и алгоритмическое мышление и направлено на развитие самостоятельной исследовательской деятельности.
Цель программы – способствовать развитию у обучающихся умений и навыков по решению задач с параметрами, модулями, и применению нестандартных приемов решения уравнений и неравенств.
— интеллектуальное развитие обучающихся,
— формирование повышенного уровня абстрактного и логического мышления,
— формирование у обучающихся представления о задачах с параметрами как о задачах исследовательского характера,
— создание условий для самостоятельной творческой работы,
— обеспечение подготовки к профессиональной деятельности, требующей высокой математической культуры.
Для реализации программы необходимо наличие компьютерной техники с выходом в сеть Интернет, проектора, интерактивной доски, презентационных сопровождений, подготовленных учителем.
Программа реализуется в интерактивном режиме.
Использование интерактивных технологий позволит активизировать индивидуальные мыслительные процессы у обучающихся; пробудить у них внутренний диалог; обеспечить понимание информации, являющейся предметом обмена; индивидуализировать взаимодействие обучающихся и преподавателя и обучающихся между собой; вывести детей на позицию субъекта обучения.
К числу интерактивных технологий, рекомендуемых к использованию в процессе реализации данного модуля можно отнести: технологию развития критического мышления; технологию проведения дискуссий, технологию «Дебаты»; тренинговые технологии. Данные технологии используются в ходе проведения теоретических и практических занятий.
Также в ходе реализации программы целесообразно использование компьютерных технологий, технологий проблемного обучения, проектной деятельности, разноуровневого обучения
Формы и методы обучения
Курс реализуется на основе практико-ориентированного подхода. Предлагается проведение 17 теоретических и 53 практических занятий
В ходе освоения курса целесообразно проведение лекций-бесед, содержание которых может варьироваться в зависимости от контингента обучющихся. Возможно проведение лекции в форме дискуссии . Практические занятия целесообразно проводить в форме групповой работы. Возможны два варианта проведения занятия: первый, когда группы выполняют разные задания и в конце занятия делятся своими наработками с аудиторией, и второй, когда обучающиеся в группах выполняют одно задание и обсуждают его результаты в аудитории, остальные задания предлагаются им для самостоятельной работы. Результаты самостоятельной работы затем обсуждаются и анализируются.
Теоретическое освоение курса обязательно должно сопровождаться направляемой преподавателем профессионально-личностной рефлексией.
Итоговый контроль проводится в форме защиты учебного проекта
Источник