Метод электронного баланса и ионно-электронный метод (метод полуреакций)
Спецификой многих ОВР является то, что при составлении их уравнений подбор коэффициентов вызывает затруднение.
Для облегчения подбора коэффициентов чаще всего используют метод электронного баланса и ионно-электронный метод (метод полуреакций). Рассмотрим применение каждого из этих методов на примерах.
Метод электронного баланса
В его основе метода электронного баланса лежит следующее правило: общее число электронов, отдаваемое атомами-восстановителями, должно совпадать с общим числом электронов, которые принимают атомы-окислители .
В качестве примера составления ОВР рассмотрим процесс взаимодействия сульфита натрия с перманганатом калия в кислой среде.
1) Составить схему реакции:
Записать исходные вещества и продукты реакции, учитывая, что в кислой среде MnO4 — восстанавливается до Mn 2+ (см. схему):
Найдем степень окисления элементов:
Из приведенной схемы понятно, что в процессе реакции происходит увеличение степени окисления серы с +4 до +6. S +4 отдает 2 электрона и является восстановителем. Степень окисления марганца уменьшилась от +7 до +2, т.е. Mn +7 принимает 5 электронов и является окислителем.
3) Составить электронные уравнения и найти коэффициенты при окислителе и восстановителе.
S +4 – 2e — = S +6 | 5 восстановитель, процесс окисления
Mn +7 +5e — = Mn +2 | 2 окислитель, процесс восстановления
Чтобы число электронов, отданных восстановителем, было равно числу электронов, принятых восстановителем, необходимо:
- Число электронов, отданных восстановителем, поставить коэффициентом перед окислителем.
- Число электронов, принятых окислителем, поставить коэффициентом перед восстановителем.
Таким образом, 5 электронов, принимаемых окислителем Mn +7 , ставим коэффициентом перед восстановителем, а 2 электрона, отдаваемых восстановителем S +4 коэффициентом перед окислителем:
4) Уравнять количества атомов элементов, не изменяющих степень окисления
Соблюдаем последовательность: число атомов металлов, кислотных остатков, количество молекул среды (кислоты или щелочи). В последнюю очередь подсчитывают количество молекул образовавшейся воды.
Итак, в нашем случае число атомов металлов в правой и левой частях совпадают.
По числу кислотных остатков в правой части уравнения найдем коэффициент для кислоты.
В результате реакции образуется 8 кислотных остатков SO4 2- , из которых 5 – за счет превращения 5SO3 2- → 5SO4 2- , а 3 – за счет молекул серной кислоты 8SO4 2- — 5SO4 2- = 3SO4 2- .
Таким образом, серной кислоты надо взять 3 молекулы:
Аналогично, находим коэффициент для воды по числу ионов водорода, во взятом количестве кислоты
6H + + 3O -2 = 3H2O
Окончательный вид уравнения следующий:
Признаком того, что коэффициенты расставлены правильно является равное количество атомов каждого из элементов в обеих частях уравнения.
Ионно-электронный метод (метод полуреакций)
Реакции окисления-восстановления, также как и реакции обмена, в растворах электролитов происходят с участием ионов. Именно поэтому ионно-молекулярные уравнения ОВР более наглядно отражают сущность реакций окисления-восстановления.
При написании ионно-молекулярных уравнений, сильные электролиты записывают в виде ионов, а слабые электролиты, осадки и газы записывают в виде молекул (в недиссоциированном виде).
При написании полуреакций в ионной схеме указывают частицы, подвергающиеся изменению их степеней окисления, а также характеризующие среду, частицы:
H + — кислая среда, OH — — щелочная среда и H2O – нейтральная среда.
Пример 1.
Рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в кислой среде.
1) Составить схему реакции:
Записать исходные вещества и продукты реакции:
2) Записать уравнение в ионном виде
В уравнении сократим те ионы, которые не принимают участие в процессе окисления-восстановления:
SO3 2- + MnO4 — + 2H + = Mn 2+ + SO4 2- + H2O
3) Определить окислитель и восстановитель и составить полуреакции процессов восстановления и окисления.
В приведенной реакции окислитель — MnO4 — принимает 5 электронов восстанавливаясь в кислой среде до Mn 2+ . При этом освобождается кислород, входящий в состав MnO4 — , который, соединяясь с H + образует воду:
MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O
Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона. Как видно образовавшийся ион SO4 2- содержит больше кислорода, чем исходный SO3 2- . Недостаток кислорода восполняется за счет молекул воды и в результате этого происходит выделение 2H + :
SO3 2- + H2O — 2e — = SO4 2- + 2H +
4) Найти коэффициенты для окислителя и восстановителя
Необходимо учесть, что окислитель присоединяет столько электронов, сколько отдает восстановитель в процессе окисления-восстановления:
MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O |2 окислитель, процесс восстановления
SO3 2- + H2O — 2e — = SO4 2- + 2H + |5 восстановитель, процесс окисления
5) Просуммировать обе полуреакции
Предварительно умножая на найденные коэффициенты, получаем:
2MnO4 — + 16H + + 5SO3 2- + 5H2O = 2Mn 2+ + 8H2O + 5SO4 2- + 10H +
Сократив подобные члены, находим ионное уравнение:
2MnO4 — + 5SO3 2- + 6H + = 2Mn 2+ + 5SO4 2- + 3H2O
6) Записать молекулярное уравнение
Молекулярное уравнение имеет следующий вид:
Пример 2.
Далее рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в нейтральной среде.
В ионном виде уравнение принимает вид:
Также, как и предыдущем примере, окислителем является MnO4 — , а восстановителем SO3 2- .
В нейтральной и слабощелочной среде MnO4 — принимает 3 электрона и восстанавливается до MnО2. SO3 2- — окисляется до SO4 2- , отдав 2 электрона.
Полуреакции имеют следующий вид:
MnO4 — + 2H2O + 3e — = MnО2 + 4OH — |2 окислитель, процесс восстановления
SO3 2- + 2OH — — 2e — = SO4 2- + H2O |3 восстановитель, процесс окисления
Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:
Пример 3.
Составление уравнения реакции между сульфитом натрия и перманганатом калия в щелочной среде.
В ионном виде уравнение принимает вид:
В щелочной среде окислитель MnO4 — принимает 1 электрон и восстанавливается до MnО4 2- . Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона.
Полуреакции имеют следующий вид:
MnO4 — + e — = MnО2 |2 окислитель, процесс восстановления
SO3 2- + 2OH — — 2e — = SO4 2- + H2O |1 восстановитель, процесс окисления
Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:
Необходимо отметить, что не всегда при наличии окислителя и восстановителя, возможно самопроизвольное протекание ОВР. Поэтому для количественной характеристики силы окислителя и восстановителя и для определения направления реакции пользуются значениями окислительно-восстановительных потенциалов.
Еще больше примеров составления окислительно-восстановительных реакций приведены в разделе Задачи к разделу Окислительно-восстановительные реакции. Также в разделе тест Окислительно-восстановительные реакции
Источник
Ионно электронный способ уравнивания
Электронно-ионный метод составления уравнений окислительно-восстановительных реакций (метод полуреакций).
Электронно-ионный метод расстановки коэффициентов в окислительно-восстановительных реакциях применяется на ряду с методом электронного баланса для реакций, протекающих в растворах.
Степень окисления при этом определять не нужно, т.к. рассматривается участие в реакции не отдельных атомов, а целого реального иона. Электронно-ионный метод правильнее отражает реальные процессы, протекающие при окислено-восстановительных реакциях в растворах.
Например, в растворе перманганата калия KMnO 4 рассматривается не Mn +7 (марганец в степени окисления +7 ), т.к. такого иона не существует, а существует ион MnO — 4 , в растворе дихромата натрия Na 2 Cr 2 O 7 – не Cr +6 , а ион Cr 2 O 2- 7 и т.д. При составлении уравнений обязательно учитывается участие молекул воды, кроме того, важно, в какой среде происходят реакции.
Реакции протекающие в кислой среде.
Рассмотрим сначала, как составляется уравнение реакции, протекающие в кислой среде. Допустим, это окисление сульфита натрия перманганатом калия в кислой среде:
Все вещества находятся в растворе в виде ионов, поэтому мы имеем право записать:
2Na + + SO 2- 3 + K + + MnO — 4 + 2H + + SO 2- 4→
→ 2Na + + SO 2 4 — + 2K + + SO 2- 4 + Mn 2+ + SO 2- 4 + H2O
При внимательном рассмотрении можно выделить и выписать отдельно ионы, которые в результате реакции претерпели изменения, и ионы, определяющие среду:
Теперь следует разобраться в процессах, происходящих с ионами. Ион SO 2- 3
Превратился в ион SO 2- 4 , т.е. присоединил атом кислорода. В растворе находится в избытке вода и катионы H + (т.к. среда раствора кислая). Кислород, очевидно, отщепился от воды. Изобразим схематически:
Оставшиеся от этого процесса атомы водорода (входящие в состав воды) переходят в раствор в виде катионов H + . Итак, недостающий атом кислорода добавлен. Теперь следует сосчитать заряды левой и правой части схемы:
Они различны: сумма зарядов левой части -2, а правой 0. Это связано с переходом электронов. Очевидно, в процессе реакций отдано два электрона :
SO 2- 3 + H2O -2ê → SO 2- 4 + 2H + ( окисление )
Электроны отданы ионом SO 2- 3 , т.к. произошло окисление этого иона. Ион SO 2- 3 –ВОССТАНОВИТЕЛЬ.
Рассмотрим что происходит с ионом MnO — 4 .
Он превратился в ион Mn 2+ , т.е. полностью потерял 4 атома кислорода. Они будут связаны ионами водорода, которых в кислой среде избыток
Для того чтобы связать 4 атома кислорода в молекулы воды, требуется 8 ионов H + :
MnO — 4 + 8 H + → Mn 2+ + 4 H 2 O (восстановление)
Устраним несоответствие в зарядах :
MnO — 4 + 8H + + 5ê → Mn 2+ + 4H2O
Изменение заряда системы от +7 до +2 связано с присоединением 5 электронов. Электроны принял ион MnO — 4 . Он является ОКИСЛИТЕЛЕМ.
Итак, мы получили два электронно-ионных уравнения. Запишем их вместе:
SO 2- 3 + H2O — 2ê → SO 2- 4 + 2H + 5
MnO — 4 + 8H + +5ê → Mn 2+ + 4H2O 2
Уравняем число отданных и принятых электронов, найдя дополнительные множители: 5 и 2. Теперь умножаем каждое уравнение на свой множитель и одновременно почленно складываем их (кроме электронов).
SO 2- 3 + H2O — 2ê → SO 2- 4 + 2H + 5
MnO — 4 + 8H + +5ê → Mn 2+ + 4H2O 2
5SO 2- 3 + 5H2O + 2MnO — 4 + 16H + → 5SO 2- 4 + 10H + + 2Mn 2+ + 8H2O
Приводим подобные члены:
5SO 2- 3 + 2MnO — 4 + 6H + → 5SO 2- 4 + 2Mn 2+ + 3H2O
Найдя коэффициенты перед ионами, ставим их в молекулярное уравнение:
Вывод: при составлении уравнений окислительно-восстановительных реакций методом полуреакций надо помнить следующее:
1) В ионной форме записываются только формулы веществ, распадающихся в растворах на ионы.
2) Во всех случаях сначала уравнивается число кислородных атомов.
3) В кислой среде кислород отдает молекулы воды, а связывается он ионами водорода.
Реакции протекающие в щелочной среде.
CrCI 3 + NaCIO + NaOH → Na 2 CrO 4 + NaCI + H 2 O
Последовательность действий сначала такая же, как и при реакции в кислой среде. Записываем схему в ионной форме:
Cr +3 + 3CI — + Na + + CIO — + Na + + OH — → 2Na + + CrO 2- 4 + Na + + CI — + H2O
Выписываем формулы ионов, претерпевающих изменения и определяющих среду:
Cr +3 + CIO — + OH — → CrO 2- 4 + CI — + H2O
Рассматриваем разницу в числе кислородных атомов. В щелочной среде кислород представляют ионы OH — . Каждые два иона OH — отдают один кислородный атом превращаются в молекулу воды. Следовательно, ионов OH — нужно вдвое больше, чем требуется атомов кислорода:
Cr +3 + 8OH — → CrO 2- 4 + 4H2O
Cr +3 + 8OH — → CrO 2- 4 + 4H2O
Происходит отдача трех электронов ионов Cr 3- . Он окисляется и является восстановителем:
Cr +3 + 8OH — -3ê → CrO 2- 4 + 4H2O
Превращение CIO — в CI — требует связывание атомов кислорода. Это осуществляется молекулами воды. Каждая молекула воды, принимая один кислородный атом превращается в два иона OH — :
CIO — + H2O → CI — + 2OH —
CIO — + H2O → CI — + 2OH —
Ион CIO — принимает 2 электрона, CIO — восстанавливается и является окислителем:
CIO — + H2O +2ê → CI — + 2OH —
Далее все так же, как в кислой среде:
Cr +3 + 8OH — -3ê → CrO 2- 4 + 4H2O 2
CIO — + H2O +2ê → CI — + 2OH — 3
2Cr +3 + 16OH — + 3H2O + 3CIO — → 2CrO 2- 4 + 8H2O + 3CI — + 6OH —
Приводим подобные члены :
2Cr +3 + 10OH — + 3CIO — → 2CrO 2- 4 + 5H2O + 3CI —
Расставляем коэффициенты в молекулярном уравнении:
Вывод: при составлении уравнений в щелочной среде правила те же, но кислород представляют ионы OH — , а связываются он молекулами воды.
Реакции протекающие нейтральной среде.
Рассмотрим, как диссоциируют вещества:
Выписываем ионы, претерпевшие изменения, и формулу воды, образующей среду:
Начинаем с уравнивания числа кислородных атомов. Поскольку среда нейтральная, добавлять кислород и связывать его можно только атомами воды. Отдавая кислород, они превращаются в ионы H + , а принимая – в ионы OH — . Каждая молекула воды может принимать один кислородный атом, превращаясь при этом в два иона OH — :
Ион MnO — 4 – принимает 3ê. Он окислитель.
Каждая молекула воды может отдать атом кислорода, превращаясь при этом в два иона H + :
Происходит отдача двух электронов. Ион SO 2- 3 – восстановитель.
Соединим оба электронно-ионных уравнения :
SO 2- 3 + H2O -2ê → SO 2- 4 + 2H + 3
В правой части равенства 8 ионов OH — и шесть ионов H + . Они образуются между собой 6 молекул воды и два иона OH — . В левой части суммируем 4 H 2 O и 3 H 2 O . Получаем :
Приводим подобные члены:
Появление в правой части свободных ионов OH — свидетельствует об образовании щелочи. Ставим коэффициенты в молекулярное уравнение.
Вывод: в нейтральной среде добавление и связывание атомов кислорода осуществляется только молекулами воды.
Источник