- Способы задания функций
- Явный аналитический способ задания функции
- Интервальный способ задания функции
- Параметрический способ задания функции
- Неявный способ задания функции
- Задание функции рядом
- Табличный способ задания функции
- Графический способ задания функции
- Понятие функции. Способы задания функции
- Метод интервалов, примеры, решения
- Алгоритм
- Научные основы метода промежутков
- Нахождение нулей числителя и знаменателя
- Определение знаков на интервалах
Способы задания функций
Существуют следующие способы задания функции y = f ( x ) :
- Явный аналитический способ по формуле вида y = f ( x ) .
- Интервальный.
- Параметрический: x = x ( t ) , y = y ( t ) .
- Неявный, как решение уравнения F ( x, y ) = 0 .
- В виде ряда, составленного из известных функций.
- Табличный.
- Графический.
Явный аналитический способ задания функции
При явном способе, значение функции определяется по формуле, представляющем собой уравнение y = f ( x ) . В левой части этого уравнения стоит зависимая переменная y , а в правой – выражение, составленное из независимой переменной x , постоянных, известных функций и операций сложения, вычитания, умножения и деления. Известными функциями являются элементарные функции и специальные функции, значения которых можно вычислить, используя средства вычислительной техники.
Вот несколько примеров явного задания функции с независимой переменной x и зависимой переменной y :
;
;
.
Интервальный способ задания функции
При интервальном способе задания функции, область определения разбивается на несколько интервалов, и функция задается отдельно для каждого интервала.
Вот несколько примеров интервального способа задания функции:
Параметрический способ задания функции
При параметрическом способе, вводится новая переменная, которую называют параметром. Далее задают значения x и y как функции от параметра, используя явный способ задания:
(1)
Вот примеры параметрического способа задания функции, используя параметр t :
Преимущество параметрического способа заключается в том, что одну и ту же функцию можно задать бесконечным числом способов. Например, функцию можно задать так:
А можно и так:
Такая свобода выбора, в некоторых случаях, позволяет применять этот способ для решения уравнений (см. «Дифференциальные уравнения, не содержащие одну из переменных»). Суть применения заключается в том, что мы подставляем в уравнение вместо переменных x и y две функции и . Затем задаем одну из них по собственному усмотрению, чтобы из получившегося уравнения можно было определить другую.
Также этот способ применяется для упрощения расчетов. Например, зависимость координат точек эллипса с полуосями a и b можно представить так:
.
В параметрическом виде этой зависимости можно придать более простую форму:
.
Уравнения (1) – это не единственный способ параметрического задания функции. Можно вводить не один, а несколько параметров, связав их дополнительными уравнениями. Например можно ввести два параметра и . Тогда задание функции будет выглядеть так:
Здесь появляется дополнительное уравнение , связывающее параметры. Если число параметров равно n , то должно быть n – 1 дополнительных уравнений.
Пример применения нескольких параметров изложен на странице «Дифференциальное уравнение Якоби». Там решение ищется в следующем виде:
(2) .
В результате получается система уравнений. Чтобы ее решить, вводят четвертый параметр t . После решения системы получается три уравнения, связывающие четыре параметра и .
Неявный способ задания функции
При неявном способе, значения функции определяется из решения уравнения .
Например, уравнение эллипса имеет вид:
(3) .
Это простое уравнение. Если мы рассматриваем только верхнюю часть эллипса, , то можно выразить переменную y как функцию от x явным способом:
(4) .
Но даже если можно свести (3) к явному способу задания функции (4), последней формулой не всегда удобно пользоваться. Например, чтобы найти производную , удобно дифференцировать уравнение (3), а не (4):
;
.
Задание функции рядом
Исключительно важным способом задания функции является ее представление в виде ряда, составленного из известных функций. Этот способ позволяет исследовать функцию математическими методами и вычислять ее значения для прикладных задач.
Самым распространенным представлением является задание функции с помощью степенного ряда. При этом используется ряд функций:
.
Также применяется ряд и с отрицательными степенями:
.
Например, функция синус имеет следующее разложение:
(5) .
Подобные разложения широко применяются в вычислительной технике, поскольку они позволяют свести вычисления к арифметическим операциям.
В качестве иллюстрации, вычислим значение синуса от 30°, используя разложение (5).
Переводим градусы в радианы:
.
Подставляем в (5):
.
В математике, на ряду со степенными рядами, широко применяются разложения в тригонометрические ряды по функциям и , а также по другим специальным функциям. С помощью рядов можно производить приближенные вычисления интегралов, уравнений (дифференциальных, интегральных, в частных производных) и исследовать их решения.
Табличный способ задания функции
При табличном способе задания функции мы имеем таблицу, которая содержит значения независимой переменной x и соответствующие им значения зависимой переменной y . Независимая и зависимая переменные могут иметь разные обозначения, но мы здесь используем x и y . Чтобы определить значение функции при заданном значении x , мы по таблице, находим значение x , наиболее близкое к нашему. После этого определяем соответствующее значение зависимой переменной y .
Для более точного определения значения функции, мы считаем, что функция между двумя соседними значениями x линейна, то есть имеет следующий вид:
.
Здесь – значения функции, найденные из таблицы, при соответствующих им значениях аргументов .
Рассмотрим пример. Пусть нам нужно найти значение функции при . Из таблицы находим:
.
Тогда
.
Точное значение:
.
Из этого примера видно, что применение линейной аппроксимации привело к повышению точности в определении значения функции.
Табличный способ применяется в прикладных науках. До развития вычислительной техники, он широко применялся в инженерных и других расчетах. Сейчас табличный способ применяется в статистике и экспериментальных науках для сбора и анализа экспериментальных данных.
Графический способ задания функции
При графическом способе, значение функции определяется из графика, по оси абсцисс которого откладываются значения независимой переменной, а по оси ординат – зависимой.
Графический способ дает наглядное представление о поведении функции. Результаты исследования функции часто иллюстрируют ее графиком. Из графика можно определить приближенное значение функции. Это позволяет использовать графический способ в прикладных и инженерных расчетах.
Автор: Олег Одинцов . Опубликовано: 18-04-2018
Источник
Понятие функции. Способы задания функции
Функцией называется закон, по которому числу х из заданного множества Х, поставлено в соответствие только одно число у, пишут , при этом x называют аргументом функции, y называют значением функции.
Существуют разные способы задания функций.
1. Аналитический способ.
Аналитический способ — это наиболее часто встречающийся способ задания функции.
Заключается он в том, что функция задается формулой, устанавливающей, какие операции нужно произвести над х, чтобы найти у. Например .
Рассмотрим первый пример — . Здесь значению x = 1 соответствует
, значению x = 3 соответствует
и т. д.
Функция может быть задана на разных частях множества X разными функциями.
Во всех ранее приведенных примерах аналитического способа задания, функция была задана явно. То есть, справа стояла переменная y, а слева формула от переменной х. Однако, при аналитическом способе задания, функция может быть задана и неявно.
Например . Здесь, если мы задаем переменной x значение, то, чтобы найти значение переменной у (значение функции), мы должны решить уравнение. Например, для первой заданной функции при х = 3, будем решать уравнение:
. То есть, значение функции при х = 3 равно -4/3.
При аналитическом способе задания, функция может быть задана параметрически — это, когда х и у выражены через некоторый параметр t. Например,
Здесь при t = 2, x = 2, y = 4. То есть, значение функции при х = 2 равно 4.
2. Графический способ.
При графическом способе вводится прямоугольная система координат и в этой системе координат изображается множество точек с координатами (x,y). При этом . Пример:
3. Словесный способ.
Функция задается с помощью словесной формулировки. Классический пример – функция Дирихле.
«Функция равна 1, если х – рациональное число; функция равна 0, если х – иррациональное число».
4. Табличный способ.
Табличный способ наиболее удобен, когда множество Х конечно. При этом способе составляется таблица, в которой каждому элементу из множества Х, ставится в соответствие число Y.
Ошибка в тексте? Выдели её мышкой и нажми
Остались рефераты, курсовые, презентации? Поделись с нами — загрузи их здесь!
Источник
Метод интервалов, примеры, решения
Метод интервалов принято считать универсальным для решения неравенств. Иногда этот метод также называют методом промежутков. Применим он как для решения рациональных неравенств с одной переменной, так и для неравенств других видов. В нашем материале мы постарались уделить внимание всем аспектам вопроса.
Что ждет вас в данном разделе? Мы разберем метод промежутков и рассмотрим алгоритмы решения неравенств с его помощью. Затронем теоретические аспекты, на которых основано применение метода.
Особое внимание мы уделяем нюансам темы, которые обычно не затрагиваются в рамках школьной программы. Например, рассмотрим правила расстановки знаков на интервалах и сам метод интервалов в общем виде без его привязки к рациональным неравенствам.
Алгоритм
Кто помнит, как происходит знакомство с методом промежутков в школьном курсе алгебры? Обычно все начинается с решения неравенств вида f ( x ) 0 (знак неравенства может быть использован любой другой, например, ≤ , > или ≥ ). Здесь f ( x ) может быть многочленом или отношением многочленов. Многочлен, в свою очередь, может быть представлен как:
- произведение линейных двучленов с коэффициентом 1 при переменной х ;
- произведение квадратных трехчленов со старшим коэффициентом 1 и с отрицательным дискриминантом их корней.
Приведем несколько примеров таких неравенств:
( x + 3 ) · ( x 2 − x + 1 ) · ( x + 2 ) 3 ≥ 0 ,
( x — 2 ) · ( x + 5 ) x + 3 > 0 ,
( x − 5 ) · ( x + 5 ) ≤ 0 ,
( x 2 + 2 · x + 7 ) · ( x — 1 ) 2 ( x 2 — 7 ) 5 · ( x — 1 ) · ( x — 3 ) 7 ≤ 0 .
Запишем алгоритм решения неравенств такого вида, как мы привели в примерах, методом промежутков:
- находим нули числителя и знаменателя, для этого числитель и знаменатель выражения в левой части неравенства приравниваем к нулю и решаем полученные уравнения;
- определяем точки, которые соответствуют найденным нулям и отмечаем их черточками на оси координат;
- определяем знаки выражения f ( x ) из левой части решаемого неравенства на каждом промежутке и проставляем их на графике;
- наносим штриховку над нужными участками графика, руководствуясь следующим правилом: в случае, если неравенство имеет знаки или ≤ изображается, штрихуются «минусовые» промежутки, если же мы работаем с неравенством, имеющим знаки > или ≥ , то выделяем штриховкой участки, отмеченные знаком « + ».
Четреж, с которым мы будем работать, может иметь схематический вид. Излишние подробности могут перегружать рисунок и затруднять решение. Нас будет мало интересовать маштаб. Достаточно будет придерживаться правильного расположения точек по мере роста значений их координат.
При работе со строгими неравенствами мы будем использовать обозначение точки в виде круга с незакрашенным (пустым) центром. В случае нестрогих неравенств точки, которые соответствуют нулям знаменателя, мы будем изображать пустыми, а все остальные обычными черными.
Отмеченные точки разбивают координатную прямую на несколько числовых промежутков. Это позволяет нам получить геометрическое представление числового множества, которое фактически является решением данного неравенства.
Научные основы метода промежутков
Основан подход, положенный в основу метода промежутков, основан на следующем свойстве непрерывной функции: функция сохраняет постоянный знак на интервале ( a , b ) , на котором эта функция непрерывна и не обращается в нуль. Это же свойство характерно для числовых лучей ( − ∞ , a ) и ( a , + ∞ ) .
Приведенное свойство функции подтверждается теоремой Больцано-Коши, которая приведена во многих пособиях для подготовки к вступительным испытаниям.
Обосновать постоянство знака на промежутках также можно на основе свойств числовых неравенств. Например, возьмем неравенство x — 5 x + 1 > 0 . Если мы найдем нули числителя и знаменателя и нанесем их на числовую прямую, то получим ряд промежутков: ( − ∞ , − 1 ) , ( − 1 , 5 ) и ( 5 , + ∞ ) .
Возьмем любой из промежутков и покажем на нем, что на всем промежутке выражение из левой части неравенства будет иметь постоянный знак. Пусть это будет промежуток ( − ∞ , − 1 ) . Возьмем любое число t из этого промежутка. Оно будет удовлетворять условиям t − 1 , и так как − 1 5 , то по свойству транзитивности, оно же будет удовлетворять и неравенству t 5 .
Используя оба полученных неравенства и свойство числовых неравенств, мы можем предположить, что t + 1 0 и t − 5 0 . Это значит, что t + 1 и t − 5 – это отрицательные числа независимо от значения t на промежутке ( − ∞ , − 1 ) .
Используя правило деления отрицательных чисел, мы можем утверждать, что значение выражения t — 5 t + 1 будет положительным. Это значит, что значение выражения x — 5 x + 1 будет положительным при любом значении x из промежутка ( − ∞ , − 1 ) . Все это позволяет нам утверждать, что на промежутке, взятом для примера, выражение имеет постоянный знак. В нашем случае это знак « + ».
Нахождение нулей числителя и знаменателя
Алгоритм нахождения нулей прост: приравниваем выражения из числителя и знаменателя к нулю и решаем полученные уравнения. При возникновении затруднений можно обратиться к теме «Решение уравнений методом разложения на множители». В этом разделе мы ограничимся лишь рассмотрением примера.
Рассмотрим дробь x · ( x — 0 , 6 ) x 7 · ( x 2 + 2 · x + 7 ) 2 · ( x + 5 ) 3 . Для того, чтобы найти нули числителя и знаменателя, приравняем их к нулю для того, чтобы получить и решить уравнения: x · ( x − 0 , 6 ) = 0 и x 7 · ( x 2 + 2 · x + 7 ) 2 · ( x + 5 ) 3 = 0 .
В первом случае мы можем перейти к совокупности двух уравнений x = 0 и x − 0 , 6 = 0 , что дает нам два корня 0 и 0 , 6 . Это нули числителя.
Второе уравнение равносильно совокупности трех уравнений x 7 = 0 , ( x 2 + 2 · x + 7 ) 2 = 0 , ( x + 5 ) 3 = 0 . Проводим ряд преобразований и получаем x = 0 , x 2 + 2 · x + 7 = 0 , x + 5 = 0 . Корень первого уравнения 0 , у второго уравнения корней нет, так как оно имеет отрицательный дискриминант, корень третьего уравнения — 5 . Это нули знаменателя.
0 в данном случае является одновременно и нулем числителя, и нулем знаменателя.
В общем случае, когда в левой части неравенства дробь, которая не обязательно является рациональной, числитель и знаменатель точно также приравниваются к нулю для получения уравнений. Решение уравнений позволяет найти нули числителя и знаменателя.
Определение знаков на интервалах
Определить знак интервала просто. Для этого можно найти значение выражения из левой части неравенства для любой произвольно выбранной точки из данного интервала. Полученный знак значения выражения в произвольно выбранной точке промежутка будет совпадать со знаком всего промежутка.
Рассмотрим это утверждение на примере.
Возьмем неравенство x 2 — x + 4 x + 3 ≥ 0 . Нулей числителя выражение, расположенное в левой части неравенства, нулей не имеет. Нулем знаменателя будет число — 3 . Получаем два промежутка на числовой прямой ( − ∞ , − 3 ) и ( − 3 , + ∞ ) .
Для того, чтобы определить знаки промежутков, вычислим значение выражения x 2 — x + 4 x + 3 для точек, взятых произвольно на каждом из промежутков.
Из первого промежутка ( − ∞ , − 3 ) возьмем − 4 . При x = − 4 имеем ( — 4 ) 2 — ( — 4 ) + 4 ( — 4 ) + 3 = — 24 . Мы получили отрицательное значение, значит весь интервал будет со знаком « — ».
Для промежутка ( − 3 , + ∞ ) проведем вычисления с точкой, имеющей нулевую координату. При x = 0 имеем 0 2 — 0 + 4 0 + 3 = 4 3 . Получили положительное значение, что значит, что весь промежуток будет иметь знак « + ».
Можно использовать еще один способ определения знаков. Для этого мы можем найти знак на одном из интервалов и сохранить его или изменить при переходе через нуль. Для того, чтобы все сделать правильно, необходимо следовать правилу: при переходе через нуль знаменателя, но не числителя, или числителя, но не знаменателя мы можем поменять знак на противоположный, если степень выражения, дающего этот нуль, нечетная, и не можем поменять знак, если степень четная. Если мы получили точку, которая является одновременно нулем числителя и знаменателя, то поменять знак на противоположный можно только в том случае, если сумма степеней выражений, дающих этот нуль, нечетная.
Если вспомнить неравенство, которое мы рассмотрели в начале первого пункта этого материала, то на крайнем правом промежутке мы можем поставить знак « + ».
Теперь обратимся к примерам.
Возьмем неравенство ( x — 2 ) · ( x — 3 ) 3 · ( x — 4 ) 2 ( x — 1 ) 4 · ( x — 3 ) 5 · ( x — 4 ) ≥ 0 и решим его методом интервалов. Для этого нам необходимо найти нули числителя и знаменателя и отметить их на координатной прямой. Нулями числителя будут точки 2 , 3 , 4 , знаменателя точки 1 , 3 , 4 . Отметим их на оси координат черточками.
Нули знаменателя отметим пустыми точками.
Так как мы имеем дело с нестрогим неравенством, то оставшиеся черточки заменяем обычными точками.
Теперь расставим точки на промежутках. Крайний правый промежуток ( 4 , + ∞ ) будет знак + .
Продвигаясь справа налево будем проставлять знаки остальных промежутков. Переходим через точку с координатой 4 . Это одновременно нуль числителя и знаменателя. В сумме, эти нули дают выражения ( x − 4 ) 2 и x − 4 . Сложим их степени 2 + 1 = 3 и получим нечетное число. Это значит, что знак при переходе в данном случае меняется на противоположный. На интервале ( 3 , 4 ) будет знак минус.
Переходим к интервалу ( 2 , 3 ) через точку с координатой 3 . Это тоже нуль и числителя, и знаменателя. Мы его получили благодаря двум выражениям ( x − 3 ) 3 и ( x − 3 ) 5 , сумма степеней которых равна 3 + 5 = 8 . Получение четного числа позволяет нам оставить знак интервала неизменным.
Точка с координатой 2 – это нуль числителя. Степень выражения х — 2 равна 1 (нечетная). Это значит, что при переходе через эту точку знак необходимо изменить на противоположный.
У нас остался последний интервал ( − ∞ , 1 ) . Точка с координатой 1 – это нуль знаменателя. Он был получен из выражения ( x − 1 ) 4 , с четной степенью 4 . Следовательно, знак остается прежним. Итоговый рисунок будет иметь вот такой вид:
Применение метода интервалов особенно эффективно в случаях, когда вычисление значения выражения связано с большим объемом работы. Примером может стать необходимость вычисления значения выражения
x + 3 — 3 4 3 · x 2 + 6 · x + 11 2 · x + 2 — 3 4 ( x — 1 ) 2 · x — 2 3 5 · ( x — 12 )
в любой точке интервала 3 — 3 4 , 3 — 2 4 .
Будем считать, что с правилами определения знаков для промежутков мы разобрались. Идем дальше.
Источник