Способы измерения информации
Для хранения информации используются специальные устройства памяти. Дискретную информацию хранить гораздо проще непрерывной, т.к. она описывается последовательностью чисел. Если представить каждое число в двоичной системе счисления, то дискретная информация предстанет в виде последовательностей нулей и единиц. Присутствие или отсутствие какого-либо признака в некотором устройстве может описывать некоторую цифру в какой-нибудь из этих последовательностей. Например, позиция на дискете описывает место цифры, а полярность намагниченности — ее значение. Для записи дискретной информации можно использовать ряд переключателей, перфокарты, перфоленты, различные виды магнитных и лазерных дисков, электронные триггеры и т.п. Одна позиция для двоичной цифры в описании дискретной информации называется битом (bit, binary digit). Битслужит для измерения информации. Информация размером в один бит содержится в ответе на вопрос, требующий ответа «да» или «нет». Непрерывную информацию тоже измеряют в битах.
Бит — это очень маленькая единица, поэтому часто используется величина в 8 раз большая — байт (byte), состоящая из двух 4-битных полубайт или тетрад. Байт обычно обозначают заглавной буквой B или Б. Как и для прочих стандартных единиц измерения для бита и байта существуют производные от них единицы, образуемые при помощи приставок кило (K), мега (M), гига (G или Г), тера (T), пета (P или П) и других. Но для битов и байтов они означают не степени 10, а степени двойки: кило — , мега —
, гига —
, тера —
, пета —
. Например, 1KB = 8Кbit = 1024B = 8192bit, 1МБ = 1024КБ = 1048576Б = 8192Кбит.
Для обработки информации используют вычислительные машины, которые бывают двух видов: ЦВМ (цифровая вычислительная машина) — для обработки дискретной информации, АВМ (аналоговая вычислительная машина) — для обработки непрерывной информации. ЦВМ — универсальны, на них можно решать любые вычислительные задачи с любой точностью, но с ростом точности скорость их работы уменьшается. ЦВМ — это обычные компьютеры.
Каждая АВМ предназначена только для узкого класса задач, например, интегрирования или дифференцирования. Если на вход такой АВМ подать сигнал, описываемый функцией , то на ее выходе появится сигнал
или
. АВМ работают очень быстро, но их точность ограничена и не может быть увеличена без аппаратных переделок. Программа для АВМ – это электрическая схема из заданного набора электронных компонент, которую нужно физически собрать.
Бывают еще и гибридные вычислительные машины, сочетающие в себе элементы как ЦВМ, так и АВМ.
На рис.1.5 изображена схема передачи информации.
Кодированием, например, является шифровка сообщения, декодированием — его дешифровка.
Процедуры кодирования и декодирования могут повторяться много раз. Ошибки при передаче информации происходят из-за шума в канале (атмосферные и технические помехи), а также при кодировании и декодировании. Теория информации изучает, в частности, способы минимизации количества таких ошибок.
Скорость передачи информации измеряется в количестве переданных за одну секунду бит или в бодах (baud): 1бод = 1бит/сек (bps). Производные единицы для бода такие же как и для бита и байта, например, 10Kbaud = 10240baud.
Информацию можно передавать последовательно, т.е. бит за битом, и параллельно, т.е. группами фиксированного количества бит. Параллельный способ быстрее, но он часто технически сложнее и дороже особенно при передаче данных на большие расстояния. Параллельный способ передачи используют, как правило, только на расстоянии не более 5 метров.
Содержательный подход к измерению информации. Сообщение – информативный поток, который в процессе передачи информации поступает к приемнику. Сообщение несет информацию для человека, если содержащиеся в нем сведения являются для него новыми и понятными Сообщение должно быть информативно. Если сообщение не информативно, то количество информации с точки зрения человека = 0. (Пример: вузовский учебник по высшей математике содержит знания, но они не доступны 1-класснику)
Алфавитный подход к измерению информации не связывает количество информации с содержанием сообщения. Алфавитный подход — объективный подход к измерению информации. Он удобен при использовании технических средств работы с информацией, т.к. не зависит от содержания сообщения. Кол-во информации зависит от объема текста и мощности алфавита. Ограничений на max мощность алфавита нет, но есть достаточный алфавит мощностью 256 символов. Этот алфавит используется для представления текстов в компьютере. Поскольку 256=28, то 1символ несет в тексте 8 бит информации.
Вероятностный подход к измерению информации. Все события происходят с различной вероятностью, но зависимость между вероятностью событий и количеством информации, полученной при совершении того или иного события можно выразить формулой которую в 1948 году предложил Шеннон.
Качество информации является одним из важнейших параметров для потребителя информации. Оно определяется следующими характеристиками:
— репрезентативность – правильность отбора информации в целях адекватного отражения источника информации. Например, в целях большей репрезентативности данных о себе абитуриенты стремятся представить в приемную комиссию как можно больше свидетельств, дипломов, удостоверений и другой информации, подтверждающей их высокий уровень подготовки, что учитывается при зачислении в ВУЗ;
— содержательность – семантическая емкость информации. Рассчитывается как отношение количества семантической информации к ее количеству в геометрической мере. Это характеристика сигнала, про который говорят, что «мыслям в нем тесно, а словам просторно». В целях увеличения содержательности сигнала, например, используют для характеристики успеваемости абитуриента не полный перечень его аттестационных оценок, а средний балл по аттестату;
— достаточность (полнота) – минимальный, но достаточный состав данных для достижения целей, которые преследует потребитель информации. Эта характеристика похожа на репрезентативность, однако разница состоит в том, что в данном случае учитывается минимальный состав информации, который не мешает принятию решения. Например, абитуриент – золотой медалист может не представлять в приемную комиссию свой аттестат: диплом, подтверждающий получение золотой медали, свидетельствует о полном наборе отличных оценок в аттестате;
— доступность – простота (или возможность) выполнения процедур получения и преобразования информации. Эта характеристика применима не ко всей информации, а лишь к той, которая не является закрытой. Для обеспечения доступности бумажных документов используются различные средства оргтехники для их хранения, а для облегчения их обработки используются средства вычислительной техники;
— актуальность – зависит от динамики изменения характеристик информации и определяется сохранением ценности информации для пользователя в момент ее использования. Очевидно, что касается информации, которая используется при зачислении, она актуальна, так как само обучение уже закончилось, и его результаты изменены быть не могут, а, значит, остаются актуальными;
— своевременность – поступление не позже заранее назначенного срока. Этот параметр также очевиден недавним абитуриентам: опоздание с представлением позитивной информации о себе при поступлении может быть чревато незачислением;
— точность – степень близости информации к реальному состоянию источника информации. Например, неточной информацией является медицинская справка, в которой отсутствуют данные о перенесенных абитуриентом заболеваниях;
— достоверность – свойство информации отражать источник информации с необходимой точностью. Эта характеристика вторична относительно точности. В предыдущем примере получаемая информация недостоверна;
— устойчивость – способность информации реагировать на изменения исходных данных без нарушения необходимой точности.
Контрольные вопросы:
1. Что такое кибернетика и что она изучает?
2. Кто являются родоначальниками кибернетики?
3. Что понимается под информацией в кибернетике?
4. С какими разделами математики тесно связана теория информации?
5. Что представляет собой теория информации как наука?
6. Какие виды информации вы знаете?
7. Чем характеризуется дискретная информация? Приведите примеры дискретной информации.
8. Что определяет частота дискретизации?
9. Сформулируйте теорему о выборках.
10. Приведите пример использования теоремы о выборках.
11. С помощью каких устройств компьютера происходит хранение, обработка и передача данных?
12. Какие способы хранения информации применяются в информатике?
13. Какие подходы к измерению информации существуют?
14. Определите содержательный подход к измерению информации.
15. Какой подход измерения информации называется алфавитным?
16. Дайте определение вероятностному подходу.
17. Какими характеристиками определяется информация?
Источник
Измерение информации
Средняя оценка: 4.4
Всего получено оценок: 408.
Средняя оценка: 4.4
Всего получено оценок: 408.
Как и любую другую физическую величину, информацию можно измерить. Существуют разные подходы к измерению информации. Один из таких подходов рассматривается в курсе информатики за 7 класс.
Что такое измерение информации
При измерении информации следует учитывать как объем передаваемого сообщения, так и его смысловую нагрузку. В связи с этим в информатике существуют разные подходы к измерению информации.
Алфавитный подход к измерению информации
Способы оценки величины информации могут учитывать или не учитывать смысла информационного сообщения.
Один из способов нахождения количества информации основан на определении веса каждого символа в тексте сообщения. При таком подходе объем сообщения зависит от количества знаков в тексте, чем больше тест, тем больше весит информационное сообщение. При этом абсолютно не важно, что написано, какой смысл несет сообщение. Так как определение объема информации привязано к текстовым единицам: буквам, цифрам, знакам препинания, то такой подход к измерению информации получил название алфавитного.
Вес отдельного знака зависит от их количества в алфавите. Число символов алфавита называют мощностью (N). Например, мощность алфавита английского языка по числу символов равно 26, русского языка 33. Но на самом деле, при написании текста используются и прописные и строчные буквы, а также знаки препинания, пробелы и специальные невидимые символы, обозначающие конец абзаца и перевод к новой строке. Поэтому имеют дело с мощностью 128 или в расширенной версии 256 символов.
Бит, байт и другие единицы измерения
Для двоичного алфавита, состоящего из двух символов – нуля и единицы, мощность алфавита будет составлять 2. Вес символа бинарного алфавита выбран в качестве минимальной единицы информации и называется «бит». Происхождение термина «бит» исходит от англоязычного слова «binary», что означает двоичный.
Восемь бит образуют байт.
Название «байт» было придумано в 1956 году В. Бухгольцем при проектировании первого суперкомпьютера. Слово «byte» было получено путем замены второй буквы в созвучном слове «bite», чтобы избежать путаницы с уже имеющимся термином «bit».
На практике величина объема информации выражает в более крупных единицах: килобайтах, терабайтах, мегабайтах.
Следует запомнить, что килобайт равен 1024 байта, а не 1000. Как, например, 1 километр равен 1000 метрам. Эта разница получается за счет того, 1 байт равен 8 битам, а не 10.
Для того, чтобы легче запомнить единицы измерения, следует воспользоваться таблицей степени двойки.
Таблица степеней двойки
Показатель степени
Значение
То есть, 2 3 = 8 – это 1 байт, состоящий из 8 бит, 2 10 = 1024 это 1 килобайт, 2 20 = 1048576 представляет собой 1 мегабайт, 2 30 = 1 гигабайт, 2 40 = 1 терабайт.
Определение количества информации
Вес символа (i) и мощность алфавита (N) связаны между собой соотношением: 2 i = N.
Так, алфавит мощностью в 256 символов имеет вес каждого символа в 8 бит, то есть один байт. Это означает, что на каждую букву приходится по байту. В таком случае, нетрудно определить, сколько весит весь кодируемый текст сообщения. Для этого достаточно вес символа алфавита умножить на количество символов в тексте. При подсчете количества символов в сообщении следует не забывать, что знаки препинания, а также пробелы – это тоже символы и они весят столько же, сколько и буквы.
Например, при условии, что каждая буква кодируется одним байтом, для текста, «Ура! Наступили каникулы.» информационный объем определяется умножением 8 битов на 24 символа (без учета кавычек). Произведение 8 * 24 = 192 бита – столько весит кодируемая фраза. В переводе на байты: 192 бита разделить на 8 получим 24 байта.
Эта схема работает и в обратной задаче. Пусть информационное сообщение составляет 2 килобайта и состоит из 512 символов. Необходимо определить мощность алфавита, используемого для кодирования сообщения.
Решение: Сначала целесообразно 2 килобайта перевести в биты: 2 * 1024 = 2048 (бит). Затем объем информационного сообщения делят на количество символов: 2048 / 512 = 4 (бит), получают вес одного символа. Для определения мощности алфавита 2 возводят в степень 4 и получают 16 – это мощность алфавита, то есть количество символов, используемых для кодирования текста.
Что мы узнали?
Одним из способов определения величины информационного сообщения является алфавитный подход, в котором любой знак в тексте имеет некоторый вес, обусловленный мощностью алфавита. Минимальной единицей измерения информации является бит. Информацию можно также измерять в байтах, килобайтах, мегабайтах.
Источник