информатика
Лекции
1. Введение
ИНФОРМАЦИЯ И ЕЕ РОЛЬ В СОВРЕМЕННОМ ОБЩЕСТВЕ.
ИНФОРМАТИКА- НАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ.
ИНФОРМАЦИЯ – ЭТО НАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ.
Например, этот или любой другой текст, имеющий определенный смысл, состоит из набора символов- букв, знаков препинания, цифр, которые объединяются в слова, те в свою очередь — в предложения и далее- в абзацы. Человек, чтобы сообщить что-либо собеседнику произносит определенные фразы- то есть издает звуковые сигналы. Данные – это зарегистрированные сигналы. Однако, не все данные являются информацией. Слыша речь на незнакомом языке, мы получаем данные, но не получаем информацию, в связи с тем, что не владеем методом преобразования данных в известные нам понятия. Изображение на знаке дорожного движения доводит до водителя автомобиля определенную информацию, а для человека, не понимающего эти знаки, они не являются информацией.
Итак, информация – это продукт преобразования зарегистрированных сигналов в известные субъекту понятия. Огромное влияние в передаче информации сыграла письменность. Затем — телефон, радио. Сейчас – телевидение и компьютерные технологии.
ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ) ИЛИ КОМПЬЮТЕР (англ. computer- -вычислитель)-УСТРОЙСТВО ДЛЯ АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ ИНФОРМАЦИИ. Принципиальное отличие использования ЭВМ от всех других способов обработки информации заключается в способности выполнения определенных операций без непосредственного участия человека, но по заранее составленной им программе. Информация в современном мире приравнивается по своему значению для развития общества или страны к важнейшим ресурсам наряду с сырьем и энергией. Еще в 1971 году президент Академии наук США Ф.Хандлер говорил: «Наша экономика основана не на естественных ресурсах, а на умах и применении научного знания».
В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют нашу эпоху постиндустриальной. В 1983 году американский сенатор Г.Харт охарактеризовал этот процесс так: «Мы переходим от экономики, основанной на тяжелой промышленности, к экономике, которая все больше ориентируется на информацию, новейшую технику и технологию, средства связи и услуги..»
2. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.
Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны.
В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.
Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.
В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к снижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).
История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная американская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.
СОВРЕМЕННЫЕ КОМПЬТЕРЫ- ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.
90-ые годы ХХ-го века ознаменовались бурным развитием компьютерных сетей, охватывающих весь мир. Именно к началу 90-ых количество подключенных к ним компьютеров достигло такого большого значения, что объем ресурсов доступных пользователям сетей привел к переходу ЭВМ в новое качество. Компьютеры стали инструментом для принципиально нового способа общения людей через сети, обеспечивающего практически неограниченный доступ к информации, находящейся на огромном множестве компьюторов во всем мире — «глобальной информационной среде обитания».
6.ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ И ЕЕ ОБЪЕМ.
ЛЮБОЕ СООБЩЕНИЕ НА ЛЮБОМ ЯЗЫКЕ СОСТОИТ ИЗ ПОСЛЕДОВАТЕЛЬНОСТИ СИМВОЛОВ- БУКВ, ЦИФР, ЗНАКОВ. Действительно, в каждом языке есть свой алфавит из определенного набора букв (например, в русском- 33 буквы, английском- 26, и т.д.). Из этих букв образуются слова, которые в свою очередь, вместе с цифрами и знаками препинания образуют предложения, в результате чего и создается текстовое сообщение. Не является исключением и язык на котором «говорит» компьютер, только набор букв в этом языке является минимально возможным.
В КОМПЬЮТЕРЕ ИСПОЛЬЗУЮТСЯ 2 СИМВОЛА- НОЛЬ И ЕДИНИЦА (0 и 1), АНАЛОГИЧНО ТОМУ, КАК В АЗБУКЕ МОРЗЕ ИСПОЛЬЗУЮТСЯ ТОЧКА И ТИРЕ. Действительно, закодировав привычные человеку символы (буквы, цифры, знаки) в виде нулей и единиц (или точек и тире), можно составить, передать и сохранить любое сообщение.
ЭТО СВЯЗАНО С ТЕМ, ЧТО ИНФОРМАЦИЮ, ПРЕДСТАВЛЕННУЮ В ТАКОМ ВИДЕ, ЛЕГКО ТЕХНИЧЕСКИ СМОДЕЛИРОВАТЬ, НАПРИМЕР, В ВИДЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ. Если в какой-то момент времени по проводнику идет ток, то по нему передается единица, если тока нет- ноль. Аналогично, если направление магнитного поля на каком-то участке поверхности магнитного диска одно- на этом участке записан ноль, другое- единица. Если определенный участок поверхности оптического диска отражает лазерный луч- на нем записан ноль, не отражает- единица.
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО ИЗ ДВУХ СИМВОЛОВ-0 ИЛИ 1, НАЗЫВАЕТСЯ 1 БИТ (англ. binary digit- двоичная единица). 1 бит- минимально возможный объем информации. Он соответствует промежутку времени, в течение которого по проводнику передается или не передается электрический сигнал, участку поверхности магнитного диска, частицы которого намагничены в том или другом направлении, участку поверхности оптического диска, который отражает или не отражает лазерный луч, одному триггеру, находящемуся в одном из двух возможных состояний.
Итак, если у нас есть один бит, то с его помощью мы можем закодировать один из двух символов- либо 0, либо 1.
Если же есть 2 бита, то из них можно составить один из четырех вариантов кодов: 00 , 01 , 10 , 11 .
Если есть 3 бита- один из восьми: 000 , 001 , 010 , 100 , 110 , 101 , 011 , 111 .
1 бит- 2 варианта,
2 бита- 4 варианта,
3 бита- 8 вариантов;
Продолжая дальше, получим:
4 бита- 16 вариантов,
5 бит- 32 варианта,
6 бит- 64 варианта,
7 бит- 128 вариантов,
8 бит- 256 вариантов,
9 бит- 512 вариантов,
10 бит- 1024 варианта,
N бит — 2 в степени N вариантов.
В обычной жизни нам достаточно 150-160 стандартных символов (больших и маленьких русских и латинских букв, цифр, знаков препинания, арифметических действий и т.п.). Если каждому из них будет соответствовать свой код из нулей и единиц, то 7 бит для этого будет недостаточно (7 бит позволят закодировать только 128 различных символов), поэтому используют 8 бит.
ДЛЯ КОДИРОВАНИЯ ОДНОГО ПРИВЫЧНОГО ЧЕЛОВЕКУ СИМВОЛА В КОМПЬЮТЕРЕ ИСПОЛЬЗУЕТСЯ 8 БИТ, ЧТО ПОЗВОЛЯЕТ ЗАКОДИРОВАТЬ 256 РАЗЛИЧНЫХ СИМВОЛОВ.
СТАНДАРТНЫЙ НАБОР ИЗ 256 СИМВОЛОВ НАЗЫВАЕТСЯ ASCII ( произносится «аски», означает «Американский Стандартный Код для Обмена Информацией»- англ. American Standart Code for Information Interchange).
ОН ВКЛЮЧАЕТ В СЕБЯ БОЛЬШИЕ И МАЛЕНЬКИЕ РУССКИЕ И ЛАТИНСКИЕ БУКВЫ, ЦИФРЫ, ЗНАКИ ПРЕПИНАНИЯ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ И Т.П.
КАЖДОМУ СИМВОЛУ ASCII СООТВЕТСТВУЕТ 8-БИТОВЫЙ ДВОИЧНЫЙ КОД, НАПРИМЕР:
A — 01000001, B — 01000010, C — 01000011, D — 01000100, и т.д.
Таким образом, если человек создает текстовый файл и записывает его на диск, то на самом деле каждый введенный человеком символ хранится в памяти компьютера в виде набора из восьми нулей и единиц. При выводе этого текста на экран или на бумагу специальные схемы — знакогенераторы видеоадаптера (устройства, управляющего работой дисплея) или принтера образуют в соответствии с этими кодами изображения соответствующих символов.
Набор ASCII был разработан в США Американским Национальным Институтом Стандартов (ANSI), но может быть использован и в других странах, поскольку вторая половина из 256 стандартных символов, т.е. 128 символов, могут быть с помощью специальных программ заменены на другие, в частности на символы национального алфавита, в нашем случае — буквы кириллицы. Поэтому, например, передавать по электронной почте за границу тексты, содержащие русские буквы, бессмысленно. В англоязычных странах на экране дисплея вместо русской буквы Ь будет высвечиваться символ английского фунта стерлинга, вместо буквы р — греческая буква альфа, вместо буквы л — одна вторая и т.д.
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО СИМВОЛА ASCII НАЗЫВАЕТСЯ 1 БАЙТ.
Очевидно что, поскольку под один стандартный ASCII-символ отводится 8 бит,
Остальные единицы объема информации являются производными от байта:
1 КИЛОБАЙТ = 1024 БАЙТА И СООТВЕТСТВУЕТ ПРИМЕРНО ПОЛОВИНЕ СТРАНИЦЫ ТЕКСТА,
1 МЕГАБАЙТ = 1024 КИЛОБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 500 СТРАНИЦАМ ТЕКСТА,
1 ГИГАБАЙТ = 1024 МЕГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ,
1 ТЕРАБАЙТ = 1024 ГИГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2000 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ.
Обратите внимание, что в информатике смысл приставок кило- , мега- и других в общепринятом смысле выполняется не точно, а приближенно, поскольку соответствует увеличению не в 1000, а в 1024 раза.
СКОРОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО ЛИНИЯМ СВЯЗИ ИЗМЕРЯЕТСЯ В БОДАХ.
1 БОД = 1 БИТ/СЕК.
В частности, если говорят, что пропускная способность какого-то устройства составляет 28 Килобод, то это значит, что с его помощью можно передать по линии связи около 28 тысяч нулей и единиц за одну секунду.
7. СЖАТИЕ ИНФОРМАЦИИ НА ДИСКЕ
ИНФОРМАЦИЮ НА ДИСКЕ МОЖНО ОБРАБОТАТЬ С ПОМОЩЬЮ СПЕЦИАЛЬНЫХ ПРОГРАММ ТАКИМ ОБРАЗОМ, ЧТОБЫ ОНА ЗАНИМАЛА МЕНЬШИЙ ОБЪЕМ.
Существуют различные методы сжатия информации. Некоторые из них ориентированы на сжатие текстовых файлов, другие — графических, и т.д. Однако во всех них используется общая идея, заключающаяся в замене повторяющихся последовательностей бит более короткими кодами. Например, в романе Л.Н.Толстого «Война и мир» несколько миллионов слов, но большинство из них повторяется не один раз, а некоторые- до нескольких тысяч раз. Если все слова пронумеровать, текст можно хранить в виде последовательности чисел — по одному на слово, причем если повторяются слова, то повторяются и числа. Поэтому, такой текст (особенно очень большой, поскольку в нем чаще будут повторяться одни и те же слова) будет занимать меньше места.
Сжатие информации используют, если объем носителя информации недостаточен для хранения требуемого объема информации или информацию надо послать по электронной почте
Программы, используемые при сжатии отдельных файлов называются архиваторами. Эти программы часто позволяют достичь степени сжатия информации в несколько раз.
Источник
Тема 10
Основы защиты информации
10.1. Защита информации как закономерность развития компьютерных систем
Защита информации – это применение различных средств и методов, использование мер и осуществление мероприятий для того, чтобы обеспечить систему надежности передаваемой, хранимой и обрабатываемой информации.
Защита информации включает в себя:
• обеспечение физической целостности информации, исключение искажений или уничтожения элементов информации;
• недопущение подмены элементов информации при сохранении ее целостности;
• отказ в несанкционированном доступе к информации лицам или процессам, которые не имеют на это соответствующих полномочий;
• приобретение уверенности в том, что передаваемые владельцем информационные ресурсы будут применяться только в соответствии с обговоренными сторонами условиями.
Процессы по нарушению надежности информации подразделяют на случайные и злоумышленные (преднамеренные). Источниками случайных разрушительных процессов являются непреднамеренные, ошибочные действия людей, технические сбои. Злоумышленные нарушения появляются в результате умышленных действий людей.
Проблема защиты информации в системах электронной обработки данных возникла практически одновременно с их созданием. Ее вызвали конкретные факты злоумышленных действий над информацией.
Важность проблемы по предоставлению надежности информации подтверждается затратами на защитные мероприятия. Для обеспечения надежной системы защиты необходимы значительные материальные и финансовые затраты. Перед построением системы защиты должна быть разработана оптимизационная модель, позволяющая достичь максимального результата при заданном или минимальном расходовании ресурсов. Расчет затрат, которые необходимы для предоставления требуемого уровня защищенности информации, следует начинать с выяснения нескольких фактов: полного перечня угроз информации, потенциальной опасности для информации каждой из угроз, размера затрат, необходимых для нейтрализации каждой из угроз.
Если в первые десятилетия активного использования ПК основную опасность представляли хакеры, подключившиеся к компьютерам в основном через телефонную сеть, то в последнее десятилетие нарушение надежности информации прогрессирует через программы, компьютерные вирусы, глобальную сеть Интернет.
Имеется достаточно много способов несанкционированного доступа к информации, в том числе:
• копирование и подмена данных;
• ввод ложных программ и сообщений в результате подключения к каналам связи;
• чтение остатков информации на ее носителях;
• прием сигналов электромагнитного излучения и волнового характера;
• использование специальных программ.
Для борьбы со всеми этими способами несанкционированного доступа необходимо разрабатывать, создавать и внедрять многоступенчатую непрерывную и управляемую архитектуру безопасности информации. Защищать следует не только информацию конфиденциального содержания. На объект защиты обычно действует некоторая совокупность дестабилизирующих факторов. При этом вид и уровень воздействия одних факторов могут не зависеть от вида и уровня других.
Возможна ситуация, когда вид и уровень взаимодействия имеющихся факторов существенно зависят от влияния других, явно или скрыто усиливающих такие воздействия. В этом случае следует применять как независимые с точки зрения эффективности защиты средства, так и взаимозависимые. Для того чтобы обеспечить достаточно высокий уровень безопасности данных, надо найти компромисс между стоимостью защитных мероприятий, неудобствами при использовании мер защиты и важностью защищаемой информации. На основе детального анализа многочисленных взаимодействующих факторов можно найти разумное и эффективное решение о сбалансированности мер защиты от конкретных источников опасности.
10.2. Объекты и элементы защиты в компьютерных системах обработки данных
Объект защиты – это такой компонент системы, в котором находится защищаемая информация. Элементом защиты является совокупность данных, которая может содержать необходимые защите сведения.
При деятельности компьютерных систем могут возникать:
• отказы и сбои аппаратуры;
• системные и системотехнические ошибки;
• ошибки человека при работе с компьютером.
Несанкционированный доступ к информации возможен во время технического обслуживания компьютеров в процессе прочтения информации на машинных и других носителях. Незаконное ознакомление с информацией разделяется на пассивное и активное. При пассивном ознакомлении с информацией не происходит нарушения информационных ресурсов и нарушитель может лишь раскрывать содержание сообщений. В случае активного несанкционированного ознакомления с информацией есть возможность выборочно изменить, уничтожить порядок сообщений, перенаправить сообщения, задержать и создать поддельные сообщения.
Для обеспечения безопасности проводятся разные мероприятия, которые объединены понятием «система защиты информации».
Система защиты информации – это совокупность организационных (административных) и технологических мер, программно-технических средств, правовых и морально-этических норм, которые применяются для предотвращения угрозы нарушителей с целью сведения до минимума возможного ущерба пользователям и владельцам системы.
Организационно-административными средствами защиты называется регламентация доступа к информационным и вычислительным ресурсам, а также функциональным процессам систем обработки данных. Эти средства защиты применяются для затруднения или исключения возможности реализации угроз безопасности. Наиболее типичными организационно-административными средствами являются:
• допуск к обработке и передаче охраняемой информации только проверенных должностных лиц;
• хранение носителей информации, которые представляют определенную тайну, а также регистрационных журналов в сейфах, недоступных для посторонних лиц;
• учет применения и уничтожения документов (носителей) с охраняемой информацией;
• разделение доступа к информационным и вычислительным ресурсам должностных лиц в соответствии с их функциональными обязанностями.
Технические средства защиты применяются для создания некоторой физически замкнутой среды вокруг объекта и элементов защиты. При этом используются такие мероприятия, как:
• ограничение электромагнитного излучения через экранирование помещений, в которых осуществляется обработка информации;
• реализация электропитания оборудования, отрабатывающего ценную информацию, от автономного источника питания или общей электросети через специальные сетевые фильтры.
Программные средства и методы защиты являются более активными, чем другие применяемые для защиты информации в ПК и компьютерных сетях. Они реализуют такие функции защиты, как разграничение и контроль доступа к ресурсам; регистрация и изучение протекающих процессов; предотвращение возможных разрушительных воздействий на ресурсы; криптографическая защита информации.
Под технологическими средствами защиты информации понимаются ряд мероприятий, органично встраиваемых в технологические процессы преобразования данных. В них также входят:
• создание архивных копий носителей;
• ручное или автоматическое сохранение обрабатываемых файлов во внешней памяти компьютера;
• автоматическая регистрация доступа пользователей к различным ресурсам;
• выработка специальных инструкций по выполнению всех технологических процедур и др.
Правовые и морально-этические меры и средства защиты включают в себя действующие в стране законы, нормативные акты, регламентирующие правила, нормы поведения, соблюдение которых способствует защите информации.
10.3. Средства опознания и разграничения доступа к информации
Идентификацией называется присвоение тому или иному объекту или субъекту уникального имени или образа. Аутентификация – это установление подлинности объекта или субъекта, т. е. проверка, является ли объект (субъект) тем, за кого он себя выдает.
Конечная цель процедур идентификации и аутентификации объекта (субъекта) заключается в допуске его к информации ограниченного пользования в случае положительной проверки либо отказе в допуске при отрицательном результате проверки.
Объекты идентификации и аутентификации включают в себя: людей (пользователей, операторов); технические средства (мониторы, рабочие станции, абонентские пункты); документы (ручные, распечатки); магнитные носители информации; информацию на экране монитора.
К наиболее распространенным методам аутентификации относятся присвоение лицу или другому имени пароля и хранение его значения в вычислительной системе. Паролем называется совокупность символов, которая определяет объект (субъект).
Пароль как средство обеспечения безопасности способен использоваться для идентификации и установления подлинности терминала, с которого входит в систему пользователь, а также для обратного установления подлинности компьютера по отношению к пользователю.
С учетом важности пароля как средства повышения безопас – ности информации от несанкционированного использования необходимо соблюдать следующие меры предосторожности:
1) не хранить пароли в вычислительной системе в незашифрованном месте;
2) не печатать и не отображать пароли в открытом виде на терминале пользователя;
3) не применять в качестве пароля свое имя или имена родственников, а также личную информацию (дата рождения, номер домашнего или служебного телефона, название улицы);
4) не применять реальные слова из энциклопедии или толкового словаря;
5) использовать длинные пароли;
6) применять смесь символов верхнего и нижнего регистров клавиатуры;
7) применять комбинации из двух простых слов, соединенных специальными символами (например, +,=,
Источник