Реферат по информатике на тему «Способы хранения информации «
Содержание
2.Организация хранения данных на компьютере. 3
3.Резервное хранение данных 5
4. Запись информации на жесткий магнитный диск (HDD) 6
Способы хранения информации.
Информация играет решающую роль в любой сфере деятельности. Современный человек имеет доступ к бесчисленному множеству сведений, понятий и фактов. В этой ситуации возникает вопрос: Где сохранить нужные материалы, имея при этом удобный доступ к ним? Для этой цели существуют различные виды носителей. Хранение информации осуществляется записью на носителях и накопителях информации. Носителем данных может являться любой материальный предмет, используемый человеком для записи, хранения, чтения и передачи информации (например, книги, диски, фотографии, flash-карты, облачные хранилища и так далее). Накопителями считаются приспособления позволяющие хранить и дополнять информацию. Сегодня существует большое количество способов хранения информации, имеющих свои плюсы и минусы. Облачные хранилища позволяют нам получать доступ к нужной информации со множества устройств имеющих доступ в интернет, а значит поломка или утеря гаджета не лишит её нас. Но чтобы пользоваться облачным хранилищем нужен постоянный доступ в интернет. Кроме того, конфиденциальные данные содержащиеся в нём могут заполучить злоумышленники. Переносные электронные носители информации обеспечивают доступ к сохраненным на них данным при наличии считывающего устройства, однако в большинстве случаев слабо защищены от потери или повреждения. Существуют так же бумажные носители, которые не нуждаются в считывающем устройстве, ведь прочитать их можно самостоятельно. Но и они имеют минусы. Бумага занимает много места и менее мобильна в отличии от электронного документа, а также затруднено редактирование её содержимого. Технологии связанные с информацией в наше время стремительно развиваются и вместе с ними прогрессируют средства её хранения. Каждый человек может выбрать удобный для себя способ.
Ни для кого не секрет, что в настоящее время из-за обилия различного рода цифровой информации, у нас начинают возникать проблемы с ее упорядочиванием и хранением. Наверняка у Вас были случаи, когда из-за не осторожного обращения с какой либо ценной информацией, Вы теряли ее навсегда. Самой ценной для всех нас, без исключения, является личная или семейная цифровая информация: фотографии, видеозаписи, какие либо документы, цифровые коллекции музыки, редких фильмов и т.п.
Потеря вышеперечисленных цифровых данных очень сильно выводят нас из душевного равновесия, так как, потеряв личные фото и видеозаписи, мы не сможем их заново скачать из интернета или взять у друзей. Они потеряны НАВСЕГДА. А это память о прошлом, как мы выглядели, с кем были знакомы, какие места посещали. Сколько приходиться пережить неприятных минут, во время которых мы виним себя и весь белый свет, за ту непростительную для нас ошибку, которую совершили по глупости, незнанию или неосторожности. Мы в большинстве своем редко задумываемся о тех последствиях, которые могут произойти из-за нашего халатного отношения к обыденным вещам, но когда мы теряем что-то ценное и невосполнимое, то задумываемся «Как же я допустил(а) это, и как мне избежать этого в будущем». Поэтому и получается, что учимся только на своих ошибках, но цена такого обучения может быть непозволительно высока. Чтобы сей горький опыт больше не повторился или вообще избавиться от получения оного, ниже я приведу несколько советов, соблюдая которые мы будем иметь возможность свести свои возможные потери к минимуму. Никакие современные методы хранения различного рода цифровых данных не дают нам 100% гарантии ее сохранности. А нам так бы хотелось, чтобы такая возможность была!
Из этого следует, что необходимо создавать резервные копии той информации, потеряв которую, Вы не сможете восполнить никогда.
Для этого необходимо:
Правильно организовать структуру хранения данных на вашем основном компьютере.
Организация хранения данных на компьютере.
Ниже я приведу примеры того, как организовано хранение информации на моем персональном компьютере и ноутбуке.
Стоит одна операционная система Windows 7 максимальная. Всего 4 HDD
Под нее отведен жесткий диск Western Digital объемом 640гб.
Далее идет Seagate 250гб. Разбит на 2 логических диска.
100 гб – «Программы», где находятся копии основных используемых мною программ и другие рабочие материалы;
150гб – «Игры» — путь к этому диску я указываю при установке различных игр, чтобы не забивать ими основной диск с операционной системой. Обычно игр стоит не более пяти, поэтому этого объема вполне достаточно. Потом такой же Seagate 250гб. Имеет один раздел «Фото и видео». На нем у меня хранятся только семейные фотографии и видеозаписи с телефона, фото и видео камер. И больше ничего лишнего. И четвертый диск объемом 1 терабайт от Hitachi имеет также один раздел, на котором я держу различные видеофильмы и музыку. Ранее он у меня был разбит на два раздела: отдельно под музыку и отдельно под фильмы, но эта идея оказалась неудачной, так как объем информации очень часто сильно менялся, и постоянно, то в одном, то в другом разделе у меня не хватало места, и я решила их объединить.
На ноутбуке стоит диск объемом 500гб и разбит он на 3 раздела:
100гб отведено под операционную систему Windows 8
200гб под видео игры музыку и т.п.
200гб для работы (программы, книги, учебная литература, различные графические материалы и т.п.)
Разбивайте диски по объему, исходя из своих потребностей. Если Вы много играете в игры и мало слушаете музыку, то и жесткие диски разбивайте в тех пропорциях, которых, как вы думаете, Вам хватит для каждого из этих занятий. Когда диски будут заполнены перераспределить место на них у Вас не получиться. Придется копировать всю информацию с диска на внешний носитель необходимого объема, который нужно еще найти, а если он есть, то этот процесс займет много времени. Приобретайте жесткие диски исходя из необходимого объема хранения данных, и правильно производите их логическую разбивку. Если позволяют средства, идеальным решением будет приобретение жесткого диска для отдельной установки на него операционной системы. Это может быть SSD, либо обычный жесткий диск объемом не менее 90 — 120 гигабайт. Этот диск должен иметь только один основной раздел (исключением может быть, когда его необходимо разбить — это установка двух и более операционных систем). В этом случае размечаем его на то количество разделов, сколько мы хотим установить операционных систем. Если Вы приобрели персональный компьютер или ноутбук с уже установленной операционной системой, то обычно в них стоит один жесткий диск (а в ноутбуке второй диск просто так установить не получиться), то для создания еще одного или нескольких логических дисков вам потребуется специальное программное обеспечение ( Partition Magic , Paragon Partition Manager , Acronis Disk Director ). Для работы с операционной системой подбирайте жесткий диск с максимальной скоростью работы, а для хранения данных лучше взять менее быстрый, но более надежный и емкий жесткий диск. Перегрев жесткого диска при работе очень сильно влияет на его износ и в будущем может грозить потерей данных на нем. При покупке компьютера, обратите пристальное внимание на его охлаждение. С организацией хранения данных на компьютере мы разобрались, теперь переходим к такому важному вопросу, как резервное хранение информации.
Резервное хранение данных
Для хранения цифровой информации придумано множество способов. Перечислим основные наиболее популярные из них, а также их плюсы и минусы для использования в наших целях:
Запись информации на оптические носители (CD-R/RW, DVD-R/RW, BD-R/RW)
Очень ограниченный объем хранимой информации;
Нет возможности произвести перезапись информации (кроме RW дисков, но само долговременное хранение на них информации опасно, в силу своих технических особенностей, да и я считаю издевательством над самим собой постоянную запись или перезапись медленных RW дисков);
С ростом объема данных количество записанных дисков тоже растет, они начинают занимать много места, становиться трудно контролировать — что, куда и когда записал;
Не совместимость некоторых оптических носителей с приводами для их чтения. У Вас наверняка бывали случаи, когда только что записанный диск на одном компьютере не читается на другом. Повлиять на этот недостаток в положительную сторону мы можем, только покупая качественные и проверенные диски. И то это не даст 100% гарантии, что он прочитается где- то на работе или дома у друзей;
Без должного отношения к хранению и эксплуатации диски получают механические повреждения, что приводит к невозможности прочитать с него информацию.
Запись на твердотельную память (флешки, SSD-диски, различные карты памяти, применяемые в телефонах, фотоаппаратах, видеокамерах)
высокая скорость записи/перезаписи информации;
простота в использовании;
небольшой размер и легкость;
универсальность (можно подключить к любому компьютерному устройству);
хорошая защита от механических воздействий (не боится падений и резких ударов).
Дороговизна хранения 1мб данных (с развитием и удешевлением данной продукции мы будем избавлены от этого недостатка);
Менее, чем на оптических дисках, но все же довольно сильно ограничен объем хранимой информации. То же самое, что и с вышеуказанным минусом. Технологии флешпамяти бурно развиваются, цены на нее падают, объем жестких дисков на ее основе постоянно растет и в недалеком будущем эти технологии выйдут на лидирующие позиции.
Запись информации на жесткий магнитный диск (HDD)
Очень высокая надежность хранения информации;
Большой объем для хранения данных;
Высокая скорость записи и удаления информации;
Самая маленькая стоимость хранения информации за 1мб;
Удобство при работе и организации данных.
В силу своих технических особенностей жесткие диски на магнитных дисках очень критичны к падению;
Нельзя допускать сильного нагрева во время работы.
Так же существуют способы для автоматического создания резервных копий:
Зеркалирование (создание двойников) дисков. Требует наличия второго такого же диска в компьютере, которые подключаются специальным способом;
Программное обеспечение, которое позволяет запланировать архивацию и сохранение данных на жесткий диск.
Все эти способы, несомненно, помогают сохранить важные данные, но их использование для рядового пользователя избыточно, требует некоторых навыков, умений и зачастую неоправданных денежных вливаний. Хочу Вам предложить, практичный и экономичный вариант решения проблемы по качественному и надежному резервному хранению наиболее ценных для Вас цифровых данных. Его я использую более шести лет, и пока считаю его лучшим решением на сегодняшний день.
К выводу о необходимости надежного хранения ценной личной цифровой информации, я пришла сразу после рождения у меня ребенка, так как мгновенно появилось множество фото и видео материалов, которые необходимо сохранить, чтобы их можно было показать своим детям, когда они вырастут. Ведь благодаря развитию цифровых технологий, у нас появилась уникальная возможность сохранить в неизменном виде, передать во всех красках качественное видео, звук и изображение. Этого были лишены наши родители. Ведь как будет здорово увидеть себя, услышать свой голос вашему сыну или дочке, лет через 20-30.
Для создания надежного хранилища данных нам потребуется:
3,5-дюймовый жесткий диск (обычный жесткий диск, который устанавливается в персональный компьютер, со скоростью вращения 5400rpm, наиболее надежный вариант). С объемом диска определитесь сами, исходя из количества информации, требующей резервной записи. Берите с запасом. Контейнер для этого диска, имеющий автономное питание, желательно с активным охлаждением. Подключение к компьютеру по USB.
Плюсы данного подхода:
Цена этого устройства несопоставима по важности выполняемой им задачи;
Широкий выбор дисков различного объема и крайне низкая цена за хранение 1мб информации;
Можно подключить к любому компьютеру;
Жесткий диск используется только тогда, когда на него записывается информация. Потом он отключается и убирается. Этим достигается его низкий износ, и как следствие, значительно увеличивающееся время работы, долговечность и надежность хранения информации.
Довольно большой размер и вес всего устройства;
Необходимо аккуратное обращение (нельзя ударять).
Этот способ, естественно, не является панацеей от всевозможных бедствий и непредвиденных случаев, поэтому, никогда не храните ценную информацию в одном экземпляре. Старайтесь, чтобы она была записана у Вас в нескольких местах. Например: в ноутбуке, персональном компьютере, флешке или на оптическом диске. Это практически на 100% предотвратит ее потерю. Возьмите за правило регулярно резервировать важные данные по мере их накопления, и никогда не забывать об этом.
Вот в принципе и все, что я хотела сказать. Попробуйте использовать данный способ резервного хранения важной информации. Я думаю, Вы останетесь им довольны.
Источник
Информатика. 10 класс
Конспект урока
Информатика, 10 класс. Урок № 4.
Тема — Обработка информации. Передача и хранение информации
Перечень вопросов, рассматриваемых в теме: обработка информации, кодирование, поиск информации, передача информации, хранение информации
Глоссарий по теме: обработка информации, кодирование, код, префиксный код, пропускная способность, объем информации, носитель информации
Основная литература по теме урока:
Л. Л. Босова, А. Ю. Босова. Информатика. Базовый уровень: учебник для 10 класса —
М.: БИНОМ. Лаборатория знаний, 2016
Дополнительная литература по теме урока:
И. Г. Семакин, Т. Ю. Шеина, Л. В. Шестакова Информатика и ИКТ. Профильный уровень: учебник для 10 класса — М.: БИНОМ. Лаборатория знаний, 2010
К. Ю. Поляков, Е. А. Еремин Информатика. Углубленный уровень: учебник для 10 класса: в 2 ч. Ч. 1. — М.: Бином, Лаборатория знаний, 2013
Теоретический материал для самостоятельного изучения:
В основе любой информационной деятельности лежат так называемые информационные процессы — совокупность последовательных действий (операций), производимых над информацией для получения какого-либо результата (достижения цели). Информационные процессы могут быть различными, но все их можно свести к трем основным: обработка информации, передача информации и хранение информации.
Обработка информации — это целенаправленный процесс изменения формы ее представления или содержания.
Из курса информатики основной школы вам известно, что существует два различных типа обработки информации:
- обработка, связанная с получением новой информации (например, нахождение ответа при решении математической задачи; логические рассуждения и др.);
- обработка, связанная с изменением формы представления информации, не изменяющая ее содержания. К этому типу относятся:
— кодирование — переход от одной формы представления информации к другой, более удобной для восприятия, хранения, передачи или последующей обработки; один из вариантов кодирования — шифрование, цель которого — скрыть смысл информации от посторонних;
— структурирование — организация информации по некоторому правилу, связывающему ее в единое целое (например, сортировка);
— поиск и отбор информации, требуемой для решения некоторой задачи, из информационного массива (например, поиск в словаре).
Общая схема обработки информации может быть представлена следующим образом:
Исходные данные — это информация, которая подвергается обработке.
Правила — это информация процедурного типа. Они содержат сведения для исполнителя о том, какие действия требуется выполнить, чтобы решить задачу.
Исполнитель — тот объект, который осуществляет обработку. Это может быть человек или компьютер. При этом человек, как правило, является неформальным, творчески действующим исполнителем. Компьютер же способен работать только в строгом соответствии с правилами, т.е. является формальным исполнителем обработки информации.
Рассмотрим отдельные процессы обработки информации более подробно.
Кодирование информации — это обработка информации, заключающаяся в ее преобразовании в некоторую форму, удобную для хранения, передачи, обработки информации в дальнейшем.
Код — это система условных обозначений (кодовых слов), используемых для представления информации.
Кодовая таблица — это совокупность используемых кодовых слов и их значений.
Нам уже знакомы примеры равномерных двоичных кодов — пятиразрядный код Бодо и восьмиразрядный код ASCII.
Самый известный пример неравномерного кода — код Морзе. В этом коде все буквы и цифры кодируются в виде различных последовательностей точек и тире.
Чтобы отделить коды букв друг от друга, вводят еще один символ — пробел (пауза). Например, слово «byte», закодированное с помощью кода Морзе, выглядит следующим образом:
При использовании неравномерных кодов важно понимать, сколько различных кодовых слов они позволяют построить.
Пример 1. Имеющаяся информация должна быть закодирована в четырехбуквенном алфавите . Выясним, сколько существует различных последовательностей из 7 символов этого алфавита, которые содержат ровно пять букв А.
Нас интересует семибуквенная последовательность, т. е.
Если бы у нас не было условия, что в ней должны содержаться ровно пять букв А, то для первого символа было бы 4 варианта, для второго — тоже 4, и т. д.
Тогда мы получили бы: 4 · 4 · 4 · 4 · 4 · 4 · 4 = 16384 варианта.
Теперь вернемся к имеющемуся условию и заполним пять первых мест буквой А. Получим:
Так как на 6-м и 7-м местах могут стоять любые из трех оставшихся букв B, C, D, то всего существует 9 (3 · 3) вариантов последовательностей.
Но ведь буквы А могут находиться на любых пяти из семи имеющихся позиций. А сколько таких вариантов всего?
Вспоминая комбинаторику, найдем число сочетаний = 21, т. е. существует 21 вариант выбора в семибуквенной последовательности ровно пяти мест для размещения букв А. Для каждого из этих 21 вариантов имеется 9 разных вариантов заполнения двух оставшихся мест. В итоге существует 189 (21 · 9) различных последовательностей.
Главное условие использование неравномерных кодов — возможность однозначного декодирования записанного с их помощью сообщения. Именно поэтому в технических системах широкое распространение получили особые неравномерные коды — префиксные коды.
Префиксный код — код со словом переменной длины, обладающий тем свойством, что никакое его кодовое слово не может быть началом другого (более длинного) кодового слова.
- Код, состоящий из слов 0, 10 и 11, является префиксным.
- Код, состоящий из слов 0, 10, 11 и 100, не является префиксным.
Условие, определяющее префиксный код, называется прямым условием Фано (в честь Роберта Марио Фано), и позволяет однозначно декодировать сообщения, записанные с помощью неравномерных кодов.
Также достаточным условием однозначного декодирования неравномерного код является обратное условие Фано. В нем требуется, чтобы никакой код не был окончанием другого (более длинного) кода.
Пример 2. Двоичные коды для 5 букв латинского алфавита представлены в таблице:
Выясним, какое сообщение закодировано с помощью этих кодов двоичной строкой: 0110100011000.
Можно заметить, что для заданных кодов не выполняется прямое условие Фано:
А вот обратное условие Фано выполняется: никакое кодовое слово не является окончанием другого. Следовательно, имеющуюся строку нужно декодировать справа налево (с конца). Получим
01 10 100 011 000 = BDCEA
Для построения префиксных кодов удобно использовать бинарные деревья, в которых от каждого узла отходят только два ребра, помеченные цифрами 0 и 1.
Пример 3. Для кодирования некоторой последовательности, состоящей из букв А, Б, В и Г, решили использовать неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. При этом используются такие кодовые слова: А — 0, Б — 10, В — 110. Каким кодовым словом может быть закодирована буква Г? Если таких слов несколько, укажите кратчайшее из них.
Построим бинарное дерево:
Чтобы найти код символа, нужно пройти по стрелкам от корня дерева к нужному листу, выписывая метки стрелок, по которым мы переходим.
Определим положение букв А, Б и В на этом дереве, зная их коды. Получим:
Чтобы код был префиксным, ни один символ не должен лежать на пути от корня к другому символу. Уберем лишние стрелки:
На получившемся дереве можно определить подходящее расположение буквы Г и его код.
Задача поиска обычно формулируется следующим образом. Имеется некоторое хранилище информации — информационный массив (телефонный справочник, словарь, расписание поездов, диск с файлами и др.). Требуется найти в нем информацию, удовлетворяющую определенным условиям поиска (телефон какой-то организации, перевод слова, время отправления поезда, нужную фотографию и т. д.). При этом, как правило, необходимо сократить время поиска, которое зависит от способа организации данных и используемого алгоритма поиска.
Алгоритм поиска, в свою очередь, также зависит от способа организации данных.
Если данные никак не упорядочены, то мы имеем дело с неструктурированным набором данных. Для осуществления поиска в таком наборе применяется метод последовательного перебора.
При последовательном переборе просматриваются все элементы подряд, начиная с первого. Поиск при этом завершается в двух случаях:
— искомый элемент найден;
— просмотрен весь набор данных, но искомого элемента среди них не нашлось.
Зададимся вопросом: какое среднее число просмотров приходится выполнять при использовании метода последовательного перебора? Есть два крайних случая:
— искомый элемент оказался первым среди просматриваемых. Тогда просмотр всего один;
— искомый элемент оказался последним среди просматриваемых. Тогда количество просмотров равно N, где N — размер набора данных. Столько же просмотров нам придется выполнить даже если не сможем найти искомого элемента.
Если же провести поиск последовательным перебором достаточно много раз, то окажется, что в среднем на поиск требуемого элемента уходит N/2 просмотров. Эта величина определяет длительность поиска — главную характеристику поиска.
Если же информация упорядочена, то мы имеем дело со структурой данных, в которой поиск осуществляется быстрее, можно построить оптимальный алгоритм.
Одним из оптимальных алгоритмов поиска в структурированном наборе данных может быть метод половинного деления.
Напомним, что при этом методе искомый элемент сначала сравнивается с центральным элементом последовательности. Если искомый элемент меньше центрального, то поиск продолжается аналогичным образом в левой части последовательности. Если больше, то — в правой. Если же значения искомого и центрального элемента совпадают, то поиск завершается.
Пример 4. В последовательности чисел 61 87 180 201 208 230 290 345 367 389 456 478 523 567 590 требуется найти число 180.
Процесс поиска представлен на схеме:
Передача информации — это процесс распространения информации от источника к приемнику через определенный канал связи.
На рисунке представлена схема модели процесса передачи информации по техническим каналам связи, предложенная Клодом Шенноном.
Работу такой схемы можно пояснить на примере записи речи человека с помощью микрофона на компьютер.
Источником информации является говорящий человек. Кодирующим устройством — микрофон, с помощью которого звуковые волны (речь) преобразуются в электрические сигналы. Канал связи — провода, соединяющие микрофон и компьютер. Декодирующее устройство — звуковая плата компьютера. Приемник информации — жесткий диск компьютера.
При передаче сигнала могут возникать разного рода помехи, которые искажают передаваемый сигнал и приводят к потере информации. Их называют «шумом».
В современных технических системах связи борьба с шумом (защита от шума) осуществляется по следующим двум направлениям:
- Технические способы защиты каналов передачи от воздействия шумов. Например, применение различных фильтров, использование специальных кабелей.
- Внесение избыточности в передаваемое сообщение, позволяющее компенсировать потерю какой-то части передаваемой по линиям связи информации. Например, если при разговоре по телефону вас плохо слышно, то, повторяя каждое слово дважды, вы увеличиваете шансы на то, что ваш собеседник поймет вас правильно.
Но чрезмерная избыточность приводит к задержкам и удорожанию связи. Поэтому очень важно иметь алгоритмы получения оптимального кода, одновременно обеспечивающего минимальную избыточность передаваемой информации и максимальную достоверность принятой информации.
В современных системах цифровой связи для борьбы с потерей информации часто применяется следующий приём. Всё сообщение разбивается на порции — блоки. Для каждого блока вычисляется контрольная сумма, которая передаётся вместе с данным блоком. В месте приёма заново вычисляется контрольная сумма принятого блока, и если она не совпадает с первоначальной, то передача данного блока повторяется.
Важной характеристикой современных технических каналов передачи информации является их пропускная способность — максимально возможная скорость передачи информации, измеряемая в битах в секунду (бит/с). Пропускная способность канала связи зависит от свойств используемых носителей (электрический ток, радиоволны, свет). Так, каналы связи, использующие оптоволоконные кабели и радиосвязь, обладают пропускной способностью, в тысячи раз превышающей пропускную способность телефонных линий.
Скорость передачи информации по тому или иному каналу зависит от пропускной способности канала, а также от длины закодированного сообщения, определяемой выбранным алгоритмом кодирования информации.
Современные технические каналы связи обладают, перед ранее известными, целым рядом достоинств:
— высокая пропускная способность, обеспечиваемая свойствами используемых носителей;
— надёжность, связанная с использованием параллельных каналов связи;
— помехозащищённость, основанная на автоматических системах проверки целостности переданной информации;
— универсальность используемого двоичного кода, позволяющего передавать любую информацию — текст, изображение, звук.
Объём переданной информации I вычисляется по формуле:
где v — пропускная способность канала (в битах в секунду), а t — время передачи.
Рассмотрим пример решения задачи, имеющей отношение к процессу передачи информации.
Пример 5. Документ объемом 10 Мбайт можно передать с одного компьютера на другой двумя способами.
А. Передать по каналу связи без использования архиватора.
Б. Сжать архиватором, передать архив по каналу связи, распаковать.
Какой способ быстрее и насколько, если:
— средняя скорость передачи данных по каналу связи составляет 2 18 бит/с;
— объем сжатого архиватором документа равен 25% от исходного объема;
— время, требуемое на сжатие документа — 5 секунд, на распаковку — 3 секунды?
Для решения данной задачи диаграмма Гантта не нужна; достаточно выполнить расчёты для каждого из имеющихся вариантов передачи информации.
Рассмотрим вариант А. Длительность передачи информации в этом случае составит:
Рассмотрим вариант Б. Длительность передачи информации в этом случае составит:
Итак, вариант Б быстрее на 232 с.
Сохранить информацию — значит тем или иным способом зафиксировать её на некотором носителе.
Носитель информации — это материальная среда, используемая для записи и хранения информации.
Основным носителем информации для человека является его собственная память. По отношению к человеку все прочие виды носителей информации можно назвать внешними.
Основное свойство человеческой памяти — быстрота, оперативность воспроизведения хранящейся в ней информации. Но наша память не надёжна: человеку свойственно забывать информацию. Именно для более надёжного хранения информации человек использует внешние носители, организует внешние хранилища информации.
Виды внешних носителей менялись со временем: в древности это были камень, дерево, папирус, кожа и др. Долгие годы основным носителем информации была бумага. Развитие компьютерной техники привело к созданию магнитных (магнитная лента, гибкий магнитный диск, жёсткий магнитный диск), оптических (CD, DVD, BD) и других современных носителей информации.
В последние годы появились и получили широкое распространение всевозможные мобильные электронные (цифровые) устройства: планшетные компьютеры, смартфоны, устройства для чтения электронных книг, GPS-навигаторы и др. Появление таких устройств стало возможно, в том числе, благодаря разработке принципиально новых носителей информации, которые:
- Обладают большой информационной ёмкостью при небольших физических размерах.
- Характеризуются низким энергопотреблением при работе, обеспечивая наряду с этим высокие скорости записи и чтения данных.
- Энергонезависимы при хранении.
- Имеют долгий срок службы.
Всеми этими качествами обладает флеш-память (англ. flash-memory). Выпуск построенных на их основе флеш-накопителей, называемых в просторечии «флэшками», был начат в 2000 году.
Источник