- Индуктивность проводника способы изменения
- Индуктивность проводника
- Обозначение и единицы измерения
- Теоретическое обоснование
- Свойства индуктивности
- Индуктивность одновиткового контура и индуктивность катушки
- Индуктивность соленоида
- Индуктивность тороидальной катушки (катушки с кольцевым сердечником)
- Индуктивность длинного прямого проводника
- Таблица индуктивностей
- Датчики
- Катушки индуктивности
- Взаимоиндукция
- Методы снижения нежелательной индуктивности
- Видео
- Явление самоиндукции
- Магнитный поток
- Электромагнитная индукция
- Почему возникает индукционный ток?
- Самоиндукция
- Индуктивность
- Можно ли увеличивать индуктивность катушки?
- Как работает катушка
- Задачка раз
- Задачка два
Индуктивность проводника способы изменения
Факторы, влияющие на индуктивность катушки
На индуктивность катушки оказывают влияние следующие основные факторы:
Число витков провода в катушке: При прочих равных условиях, увеличение числа витков приводит к увеличению индуктивности ; уменьшение числа витков приводит к уменьшению индуктивности.
Пояснение: чем больше количество витков, тем больше будет магнитодвижущая сила для заданной величины тока.
Площадь поперечного сечения катушки: При прочих равных условиях , катушка с большей площадью поперечного сечения будет иметь большую индуктивность ; а катушка с меньшей площадью поперечного сечения — меньшую индуктивность.
Пояснение: Катушка с б ольшей площадью поперечного сечения оказывает меньшее сопротивление формированию магнитного потока для заданной величины магнитодвижущей силы .
Длина катушки: При прочих равных условиях, чем больше длина катушки, тем меньше ее индуктивность; чем меньше длина катушки, тем больше ее индуктивность.
Пояснение: Чем больше длина катушки, тем большее сопротивление она оказывает формированию магнитного потока для заданной величины магнитодвижущей силы.
Материал сердечника: При прочих равных условиях, чем больше магнитная проницаемость сердечника, вокруг которого намотана катушка, тем больше индуктивность; чем меньше магнитная проницаемость сердечника — тем меньше индуктивность.
Пояснение: Материал сердечника с большей магнитной проницаемостью способствует формированию большего магнитного потока для заданной величины магнитодвижущей силы.
Приблизительное значение индуктивности любой катушки можно найти по следующей формуле:
Следует понимать , что данная формула дает только приблизительные цифры . Одной из причин такого положения дел является изменение величины магнитной проницаемости при изменении напряженности магнитного поля (вспомните нелинейность кривой В/Н для разных материалов). Очевидно, если проницаемость (µ) в уравнении будет непостоянна, то и индуктивность (L) также будет в некоторой степени непостоянна. Если гистерезис материала сердечника будет существенным, то это непременно отразится на индуктивности катушки. Разработчики катушек индуктивности пытаются минимизировать эти эффекты, проектируя сердечник таким образом, чтобы его намагниченность никогда не приближалась к уровням насыщения, и катушка работала в более линейной части кривой B/H.
Если катушку сделать таким образом, что любой из вышеперечисленных факторов у нее можно механически изменить, то получится катушка с регулируемой величиной индуктивности или вариометр. Наиболее часто встречаются вариометры, индуктивность которых регулируется количеством витков или положением сердечника (который перемещается внутри катушки). Пример вариометра с изменяемым количеством витков можно увидеть на следующей фотографии:
Это устройство использует подвижные медные контакты , которые подключаются к катушке в различных точках ее длины. Подобные катушки, имеющие воздушный сердечник, применялись в разработке самых первых радиоприемных устройств.
Катушка с фиксированными значениями индуктивности, показанная на следующей фотографии, представляет собой еще одно раритетное устройство, использовавшееся в первых радиостанциях. Здесь вы можете увидеть несколько витков относительно толстого провода, а так же соединительные выводы:
А это еще одна катушка индуктивности, так же предназначенная для радиостанций. Для большей жесткости ее провод намотан на керамический каркас:
Многие катушки индуктивности обладают небольшими размерами, что позволяет монтировать их непосредственно на печатные платы. Посмотрев внимательно на следующую фотографию, можно увидеть две расположенные рядом катушки:
Две катушки индуктивности расположены справа в центре этой платы и имеют обозначения L1 и L2. В непосредственной близости от них находятся резистор R3 и конденсатор С16. Показанные на плате катушки называются «торроидальными», так как их провод намотан вокруг сердечника, имеющего форму тора.
Как резисторы и конденсаторы, катушки индуктивности могут выполняться в корпусе для поверхностного монтажа (SMD). На следующей фотографии представлено несколько таких катушек:
Две индуктивности здесь расположены справа в центре платы. Они представляют собой маленькие черные чипы с номером «100», а над одной из них можно увидеть обозначение L5.
Источник
Индуктивность проводника
Этим термином называют коэффициент, определяющий пропорциональное отношение между суммарным магнитным потоком (Фс) и электрическим током (I) в определенном контуре. Индуктивность проводника (L) и отмеченные параметры соединены в следующей формуле: Фc = I * L. Данная публикация поможет разобраться с тематическими вычислениями и применением теоретических знаний для расчета катушек, других специальных изделий.
Обозначение и единицы измерения
Упомянутый выше суммарный магнитный поток (Фс) также называется «потокосцеплением». Этот параметр определяет свойство определенного проводника препятствовать изменениям проходящего через него электрического тока. С его помощью можно найти величину созданной электродвижущей силы (Е), определить мощность (W):
Из приведенных выражений видно, что индуктивность проводника зависит от силы тока, который за определенное значение времени способен образовать ЭДС в замкнутом контуре.
К сведению. Следует учитывать тот факт, что при рассмотрении высокочастотного диапазона влияние индуктивности значительно даже при работе с прямыми участками проводников.
В стандартной международной системе единиц «СИ» данный параметр указывают в генри (Гн). 1 Гн соответствует контуру, который формирует в контрольных точках разность потенциалов 1V. Сила тока в катушке за одну секунду изменяется на 1 А.
Теоретическое обоснование
Рассматриваемое явление основано на способности генерации магнитного поля проводником при пропускании через соответствующий контур электрического тока. Для облегчения расчетов возможны следующие допущения:
- слабость (медленное изменение) электрических полей;
- постоянная сила тока в каждой части контура;
- отсутствие емкостных составляющих проводника.
Для элементарно малых областей эксперимента берут точечное распределение токов (магнитных полей). Суммирование расчетных параметров позволяет уточнить зависимость векторного представления индукции (B) от потока, пронизывающего поверхность S. Ее край формирует контур, по которому пропускают ток.
Чтобы не усложнять вычисления, рассматривают суммарный поток, проходящий через S, без учета сложности определенной поверхности. Он будет примерно равен току. Уточняющий коэффициент (L) помогает узнать действительное значение.
К сведению. На основе приведенных рассуждений можно сделать промежуточный вывод о минимальном значении формы контура (при работе с низкими и средними частотами).
Свойства индуктивности
Следующие особенности индуктивности (L) надо учитывать в ходе подготовки конструкторской документации:
- L > 0;
- L зависит от размеров рабочего контура;
- на L оказывают влияние магнитные свойства окружающей среды.
Индуктивность одновиткового контура и индуктивность катушки
По приведенным выше формулам несложно сделать расчет базовых параметров для одного витка. Общее значение Фс (потокосцепление) равно сумме потоков через каждый из контуров, при одинаковых размерах рабочих элементов Ln = L1 * N2, где N – количество витков.
Важно! В реальных условиях структура магнитных полей значительно отличается в центральной части и на краях катушки.
Индуктивность соленоида
Этим термином называют катушку с длиной, намного большей, по сравнению с диаметром. Такое соотношение геометрических размеров формирует параллельные силовые линии в центре конструкции. Для этой части индукция определяется по формуле:
В = m * N*I, где m (магнитная постоянная) = 4*π*10-7 Гн.
Индуктивность определяют с помощью выражения:
где:
- S – площадь поперечного сечения катушки;
- l – длина конструкции.
При установке внутрь сердечника с ферромагнитными свойствами дополнительно применяют поправочный множитель (m1), который определяет влияние соответствующего материала.
Индуктивность тороидальной катушки (катушки с кольцевым сердечником)
Для расчета изделий такой формы допустимо применять стандартную формулу со следующими поправками:
где r – радиус до центральной оси тора.
Индуктивность длинного прямого проводника
Такую конструкцию рассчитывают по формуле:
где mc (mi) – относительные проницаемости среды (материала проводника), соответственно.
При отсутствии внешних помех коэффициент mc берут равным единице.
Таблица индуктивностей
Катушка индуктивности в цепи переменного тока проявляет себя различным образом. По мере увеличения частоты большее влияние начинает оказывать так называемый «скин» эффект. Его вызывают поверхностные токи. Для коррекции распределения полей применяют поправочные множители. В некоторых ситуациях приходится дополнительно учитывать воздействие вихревых составляющих.
Датчики
Изменение напряжения на катушке индуктивности используют для контроля параметров окружающей среды. Такие датчики чутко реагируют на приближение изделий с ферромагнитными свойствами. Их применяют для бесконтактной фиксации положения отдельных частей механизмов, створок ворот и других изделий.
В соответствующем исполнении они хорошо противостоят неблагоприятным внешним воздействиям. Потенциальных потребителей привлекают простота, разумная стоимость, долговечность. Функциональный датчик несложно сделать собственными руками при необходимости. Такие приборы без проблем совмещаются с другими компонентами систем автоматизации.
Катушки индуктивности
Изделия этого типа используют для создания:
- понижающих и повышающих трансформаторов;
- колебательных контуров;
- электромагнитных приводов;
- нагревательных элементов;
- приемных антенн.
К сведению. Катушку какой индуктивности надо включить для решения определенной задачи, вычисляют с помощью рассмотренных выше формул.
Взаимоиндукция
Так называют процесс возникновения электродвижущей силы в другом контуре при пропускании тока через первый.
Методы снижения нежелательной индуктивности
Для уменьшения негативных влияний применяют намотку катушек двойным проводом с последующим встречным соединением. Противоположное направление движения тока компенсируют паразитные поля. В линиях питания устанавливают компенсирующие реактивные нагрузки.
Видео
Источник
Явление самоиндукции
О чем эта статья:
11 класс, ЕГЭ/ОГЭ
Магнитный поток
Прежде чем говорить об электромагнитной индукции и самоиндукции, нам нужно определить сущность магнитного потока.
Представьте, что вы взяли в руки обруч и вышли на улицу в ливень. Потоки воды будут проходить через обруч.
Если держать обруч горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.
Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).
Магнитный поток очень похож на поток воды, проходящей через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.
Магнитным потоком через площадь S контура называют скалярную физическую величину, равную произведению:
- модуля вектора магнитной индукции B,
- площади поверхности S, которую пронизывает поток,
- и косинуса угла α между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности).