Имеется 5 флагов сколькими способами 3

Комбинаторика 3

Решение многих комбинаторных задач сводится к умножению друг на друга числа возможных вариантов независимого выбора. Вы наверняка обратили на это внимание — таковы были, например, задачи 19 и 20 из листка «Комбинаторика 1». Рассмотрим другие примеры.

1. Сколькими способами можно купить пиджак и брюки, если в магазине есть 7 видов пиджаков и 5 видов брюк?

Допустим, что пиджак уже куплен. Тогда в пару к нему можно выбрать любые из 5 брюк. Таким образом, существует 5 наборов пиджак—брюки, содержащих выбранный пиджак. Поскольку пиджаков всего 7, то имеется 7·5 = 35 различных наборов из пиджака и брюк, т.е. покупку можно сделать 35 способами.

2. В магазин привезли еще 4 вида галстуков. Сколькими способами можно теперь купить комплект из пиджака, брюк и галстука?

Допустим, что пара пиджак—брюки уже выбрана. К ней можно купить галстук 4 способами. Поскольку пар пиджак—брюки всего 35, имеется 35·4 = 140 способов купить пиджак, брюки и галстук. Заметим, что искомое число способов получается прямым перемножением вариантов: 140 = 7·5·4.

В некоторых задачах выбор не является независимым: осуществление выбора ограничивает число возможных вариантов на следующем этапе. Вот пример.

3. Сколькими способами можно составить трехцветный флаг из трех горизонтальных полос, если имеется материя 5 различных цветов?

Для верхней полосы флага существует 5 способов выбора цвета. Когда цвет верхней полосы выбран, для средней полосы остается 4 возможных цвета. После выбора цвета верхней и средней полос цвет нижней полосы можно выбрать 3 способами. Итого получается 5·4·3 = 60 способов составить флаг.

  1. В буфете продаются 4 вида булочек и 5 видов пирожных. Сколькими способами можно купить булочку и пирожное?
  2. У Кати есть 6 ручек, 3 карандаша и 4 тетради. Сколькими способами Катя может взять с собой в школу ручку, карандаш и тетрадь?
  3. Сколько различных пар, состоящих из гласной и согласной букв, можно выбрать из слова «комбинаторика»?
  4. В языке аборигенов далекого острова 10 прилагательных, 20 существительных и 15 глаголов. Предложением называется всякое сочетание либо существительного и глагола, либо прилагательного, существительного и глагола. Сколько всего предложений имеется в этом языке?
  5. Сколько различных четырехзначных чисел можно составить из цифр 1, 2, 3 и 4?
  6. Монету подбрасывают пять раз. Сколько различных последовательностей орлов и решек можно при этом получить?
  7. Каждую грань кубика можно покрасить в белый, красный или черный цвет. Сколько существует вариантов раскраски кубика?
  8. Сколько существует четырехзначных чисел, все цифры которых нечетны?
  9. Сколько существует а) семизначных чисел; б) четных трехзначных чисел?
  10. В футбольной команде 11 человек. Нужно выбрать капитана и его помощника. Сколькими способами это можно сделать?
  11. Король решил выдать замуж трех своих дочерей. Со всех концов света явились во дворец сто юношей. Сколькими способами дочери короля могут выбрать себе женихов?
  12. Сколько различных четырехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 и 6, используя каждую из цифр ровно по одному разу?
  13. Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4 и 5, используя каждую из цифр ровно по одному разу?
  14. Сколько анаграмм имеют слова «цифра», «листок»?
  15. В некоторой гимназии, в некотором классе в понедельник семь уроков: математика, латынь, греческий, литература, история, английский и физкультура. Сколько вариантов расписания в этом классе можно составить на понедельник?

Источник

06. Размещения

Пусть имеется некоторое множество, содержащее n элементов. Выберем из этого множества k элементов без возвращения, но упорядочивая их по мере их выбора в последовательную цепочку. Такие цепочки называются размещениями.

Размещениями из n элементов по k элементов называются такие комбинации, из которых каждое содержит k элементов, взятых из числа данных n элементов, и которые отличаются друг от друга либо самими элементами (хотя бы одного), либо порядком их расположения.

Поясним это на следующем примере. Пусть имеется три элемента: a, b и c. Тогда из этих трёх элементов можно составить шесть размещений по два элемента: ab, ac, ba, bc, ca, cb. Все приведённые размещения отличаются друг от друга хотя бы одним элементом или порядком их расположения.

Число размещений (читается: число размещений из n элементов по k элементов) можно найти из принципа умножения. Первый элемент размещения можно выбрать n способами. Как только такой выбор будет сделан, останется (n–1) возможностей, чтобы выбрать второй элемент; после этого останется (n–2) возможностей для выбора третьего элемента и т. д.; для выбора k-го элемента будет (n–k+1) возможностей. По принципу умножения находим

. (4.1)

Легко понять, что .

Пример 4.1. В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить 4 различных фотографии. Сколькими способами это можно сделать, если ни одна страница газеты не должна содержать более одной фотографии?

Решение. Для размещения фотографий следует отобрать 4 различных страницы из 12 имеющихся. Затем нужно отобранные страницы упорядочить, т. е. определить, на какую страницу поместить первую фотографию, на какую – вторую и т. д. Полученная упорядоченная совокупность страниц является, согласно определению, размещением из 12 элементов по 4, а число таких размещений является искомым результатом:

Читайте также:  Банк как способ хранения денег

.

Пример 4.2. Сколькими способами можно составить трехцветный полосатый флаг, если имеются ткани пяти различных цветов? Решите эту же задачу при условии, что одна полоса должна быть красной.

Решение. Поскольку в данной задаче важен порядок следования полос и все цвета во флаге должны быть разными, то исходная задача сводится к подсчету числа размещений из 5 по 3:

способов.

При условии, что одна полоса должна быть красной, получаем, что для выбора места для красной полосы существует 3 способа, а для оставшихся двух полос останется способов. Таким образом, трехцветный полосатый флаг из имеющихся 5 цветов при условии, что один цвет должен быть красным можно составить

способами.

Пример 4.3. Сколькими способами 10 человек можно поставить парами в ряд?

Решение. Первую пару можно выбрать способами, вторую – способами, и т. д. В результате получаем

способами.

4.1. Научное общество состоит из 25 человек. Надо выбрать президента общества, вице-президента, ученого секретаря и казначея. Сколькими способами может быть сделан этот выбор, если каждый член общества может занимать лишь один пост?

Ответ: В этом случае надо число размещений из 25 элементов по 4. Здесь играет роль и то, кто будет выбран в руководство общества, и то, какие посты займут выбранные. Поэтому ответ дается формулой .

4.2. В цехе работают 8 токарей. Сколькими способами можно поручить трем из них изготовление различных видов деталей (по одному виду на каждого).

Ответ: .

4.3. Из 10 книг выбирают 4 для рассылки по разным адресам. Сколькими способами это можно сделать?

Ответ: .

4.4. Сколькими способами можно опустить 5 писем в 11 почтовых ящиков, если в каждый ящик опускают не более одного письма?

Ответ: .

4.5. Студенту необходимо сдать 5 экзаменов в течение 12 дней. Сколькими способами можно составить расписание экзаменов, если в течение дня он может сдать не более одного экзамена?

Ответ: .

4.6. Сколькими способами можно преподнести 4 различных подарка 6 ученикам таким образом, чтобы каждый ученик получил не более одного подарка?

Ответ: .

4.7. Сколько различных четырехзначных чисел можно составить из цифр 0, 1, 2, …, 9, если каждая цифра в обозначении числа встречается не более одного раза? (Учесть, что число не может начинаться с нуля.)

Ответ: .

Источник

Математика — онлайн помощь

Рассмотрим множество, состоящее из n различных элементов. Требуется выбрать из них какие-нибудь k элементов и расположить эти k элементов в каком-либо порядке. Такие упорядоченные последовательности называются размещениями из n элементов по k элементов (упорядоченные – следовательно, последовательности <1,2>и <2,1>— различные размещения).

Если в последовательности нет одинаковых элементов, то говорят о размещении без повторений. Их количество

Если в последовательности допускается наличие одинаковых элементов, то говорят о размещении с повторениями. Их количество

Любое подмножество (неупорядоченное), состоящее из k элементов, называется сочетанием из n элементов по k элементов.

Различные сочетания отличаются друг от друга только самими входящими в них элементами, порядок их следования безразличен, т.е. по условию задачи подмножества <1,2>и <2,1>не различны (соединены).

Число сочетаний без повторений

.

Число сочетаний с повторениями

.

Количество способов переставить элементов в заданном множестве (количество перестановок) вычисляется по формуле

.

При решении простейших комбинаторных задач можно использовать следующую таблицу, определяющую число множеств, состоящих из k элементов, отбираемых из множества, содержащего n элементов

Выбор Неупорядоченный Упорядоченный
Без повтора
С повтором

Рассмотрим разницу между сочетаниями, размещениями с повторениями, без повторений на следующих примерах.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

ПРИМЕР 13.2.1 В коробке 6 шаров, пронумерованных от 1 до 6. Из коробки вынимаются друг за другом 3 шара и в этом же порядке записывают полученные цифры. Сколько трехзначных чисел можно таким образом записать?

Решение: По условию задачи подмножества <1;2;3>и <3;1;2>– различные. Повторов в подмножестве быть не может, так как шары не возвращаются в коробку.

.

ПРИМЕР 13.2.2. В коробке 6 шаров пронумерованных от 1 до 6. Из коробки вынимаются 3 шара и записывают число в порядке возрастания цифр. Сколько трехзначных чисел можно таким образом записать?

Решение: По условию задачи подмножества <1;2;3>и <3;2;1>дают число 123, т.е. не являются различными.

.

ПРИМЕР 13.2.3. Условие задачи 2.1 (шары возвращаются в коробку)

Решение: .

ПРИМЕР 13.2.4. Условие задачи 2.2 (шары возвращаются в коробку)

Решение: .

ПРИМЕР 13.2.5. Сколько различных перестановок можно составить из букв слова «комар»?

Решение: .

ПРИМЕР 13.2.6. Сколько различных перестановок можно составить из букв слова «задача»?

Решение: Если бы все шесть букв слова были различны, то число перестановок было бы 6! Но буква «а» встречается в данном слове три раза, и перестановки только этих трех букв «а» не дают новых способов расположения букв. Поэтому число перестановок букв слова «задача» будет не 6!, а в 3! раза меньше, то есть .

Читайте также:  Необычные способы рисования карандашом

ПРИМЕР 13.2.7. В мастерской имеется материал 5 цветов. Поступил заказ на пошив флагов, состоящих из трех горизонтальных полос разного цвета каждый. Сколько таких различных флагов может сшить мастерская?

.

Решение: Флаги отличаются друг от друга как цветом полос, так и их порядком, поэтому разных флагов можно сделать штук.

ПРИМЕР 13.2.8. Сколькими способами можно распределить 5 учеников по 3 параллельным классам?

Решение: Составим вспомогательную таблицу

Таким образом, видно, что если для одного ученика существует 3 варианта выбора класса, то для всех 5 учеников существует способов распределения по классам.

ПРИМЕР 13.2.9. На книжной полке помещается 30 томов. Сколькими способами их можно расставить, чтобы при этом первый и второй том не стояли рядом?

Решение: Произведем рассуждения “от обратного”. Тридцать томов на одной полке можно разместить 30! способами.

.

Если 1 и 2 тома должны стоять рядом, то число вариантов расстановки сокращается до , т.к. комбинацию из 1 и 2 тома можно считать за один том, но при этом они могут стоять как (1;2) или (2;1), т.е.

, .

Тогда искомое число способов расстановки есть

ПРИМЕР 13.2.10. Чемпионат, в котором участвуют 16 команд, проводится в два круга, т.е. каждая команда дважды встречается с любой другой. Определить, какое количество встреч следует провести.

Решение: По условию задачи из 16 команд для каждой встречи требуется отобрать 2 команды. В данном случае отбор производится без повтора и порядок отбора не важен, т.е. число вариантов — . Так как команды должны играть дважды число вариантов удваивается, т.е. .

ПРИМЕР 13.2.11. Автомобильная мастерская имеет для окраски 10 основных цветов. Сколькими способами можно окрасить автомобиль, если смешивать от 3 до 7 основных цветов?

Решение: По условию задачи отбор цветов для окраски производится без повтора и порядок отбора не важен, т.е. число вариантов зависит лишь от числа отбираемых для окраски цветов — . Поэтому общее число вариантов есть

.

ПРИМЕР 13.2.12. Турист прошел маршрут из пункта A в пункт B, из B в C и вернулся обратно. Сколько вариантов маршрута существует, если из пункта A в пункт B ведут 3 дороги, а из B в C — 4 и нельзя возвращаться той дорогой, по которой уже прошел?

Решение: Составим схему.

Из рисунка видно, что вариантов маршрута из А в B существует 3, и из B в C – 4, т.е. всего маршрутов .

На обратном пути вариантов маршрута из С в B существует 3 (один уже пройден), и из B в А – 2, т.е. всего возможных обратных маршрутов осталось . Тогда всего вариантов маршрута .

ПРИМЕР 13.2.13. Двенадцати ученикам выданы два варианта контрольной работы. Сколькими способами можно посадить учеников в два ряда по 6 человек, чтобы у сидящих рядом не было одинаковых вариантов, а у сидящих друг за другом был один и тот же вариант?

Решение: Рассуждения произведем несколькими способами

I способ) Первоначально 12 учеников разбивают на 2 группы по 6 человек. Это можно сделать способами.

Затем они могут распределиться по своим рядам согласно схеме

.

Поэтому всего способов распределения учеников будет .

II способ) Первоначально 12 учеников запускают в класс, указывая место, где каждый должен сидеть, например “второй ряд, третье место”. Так как посадочных мест также 12, то всего вариантов распределения 12!
Варианты контрольной работы могут распределиться

“I вариант – I ряд, II вариант – II ряд”

“II вариант – I ряд, I вариант – II ряд”,

Таким образом, всего способов распределения учеников будет .

По приведенным решениям видно, что результаты решений совпадают.

ПРИМЕР 13.2.14. Сколько существует вариантов расположения шести гостей за круглым шестиместным столом?

Решение: Эта задача имеет разные решения и, соответственно разные ответы – в зависимости от того, что понимать под различным расположением гостей за столом. Поэтому исследуем возможные варианты.

Если считать, что нам важно, кто сидит на каком стуле, то это простая задача на перестановки и, следовательно, всего вариантов .

Если же важно не то, кто какой стул занял, а то, кто рядом с кем сидит, то требуется рассмотреть варианты взаимного расположения гостей. В таком случае, расположения гостей, получаемые одно из другого при повороте гостей вокруг стола, фактически являются одинаковыми (смотри рисунок).

Очевидно, что для любого расположения гостей таких одинаковых вариантов, получаемых друг из друга поворотом, — шесть. Тогда общее число вариантов уменьшается в шесть раз и их остается .
В случае же, когда нас интересует только взаимное расположение гостей, то одинаковыми можно считать и такие симметричные расположения, при которых у каждого гостя остаются те же соседи за столом, только левый и правый меняются местами (смотри рисунок).

В такой постановке вопроса общее число различных вариантов расположений гостей уменьшается вдвое и составляет 60.

Читайте также:  Применяя тот или иной способ начисления амортизации можно тест

Отметим, что каждое решение будет считаться правильным при соответствующей постановке задачи.

ПРИМЕР 13.2.15. Семнадцать студентов сдали экзамены по 4 предметам только на “хорошо” и “отлично”. Верно ли утверждение, что хотя бы у двух из них оценки по экзаменационным предметам совпадают?

Решение: Очевидно, что в данном случае речь идет о возможных вариантах вида

Предмет 1 2 3 4
Студент 1 4 4 5 5
Студент 2 5 4 4 5
Студент 3 5 5 5 5
Студент 17 4 4 5 4

Данный пример можно решить способом, изложенным в примере 13.1.8., и получить количество вариантов . Приведем другой наглядный способ решения, использующий так называемое “дерево решений”,который представляет все варианты (16 штук) получения экзаменационных оценок.

.

По “дереву решений” видно, что 16 студентов могут сдать экзамены только на “хорошо” и “отлично” так, что их результаты будут отличаться, но если студентов 17, хотя бы одно повторение обязательно будет.

При решении задач комбинаторики используются следующие правила.

Если некоторый объект A может быть выбран из совокупности объектов m способами, а другой объект B может быть выбран nспособами, то:

Правило суммы: выбрать либо A, либо B можно m+n способами.

Правило произведения. Пара объектов (A,B) в указанном порядке может быть выбрана способами.

Примеры и задачи для самостоятельного решения

Решить комбинаторную задачу.

13.2.1.1. В группе 25 студентов. Сколькими способами можно выбрать старосту, заместителя старосты и профорга?

13.2.1.2. В группе 25 студентов. Сколькими способами можно выбрать актив группы, состоящий из старосты, заместителя старосты и профорга?

13.2.1.3. Сколькими способами можно составить список из 10 человек?

13.2.1.4. Сколькими способами из 15 рабочих можно создать бригады по 5 человек в каждой?

13.2.1.5. Буквы азбуки Морзе образуются как последовательности точек и тире. Сколько букв можно составить, используя для кодировки каждой из букв: а) ровно 5 символов? б) не более пяти символов?

13.2.1.6. Кости для игры в домино метятся двумя цифрами. Кости симметричны, и поэтому порядок чисел не существенен. Сколько различных костей можно образовать, используя числа 0,1,2,3,4,5,6?

13.2.1.7. Сколько различных звукосочетаний можно взять на десяти выбранных клавишах рояля, если каждое звукосочетание может содержать от трех до десяти различных звуков?

13.2.1.8. В вазе стоят 10 красных и 5 розовых гвоздик. Сколькими способами можно выбрать из вазы пять гвоздик одного цвета?

13.2.1.9. В некоторых странах номера трамвайных маршрутов обозначаются двумя цветными фонарями. Какое количество различных маршрутов можно обозначить, если использовать фонари восьми цветов?

13.2.1.10. Команда компьютера записывается в виде набора из восьми цифровых знаков – нулей и единиц. Каково максимальное количество различных команд?

13.2.1.11. Десять групп занимаются в десяти расположенных подряд аудиториях. Сколько существует вариантов расписания, при которых группы 1 и 2 находились бы в соседних аудиториях?

13.2.1.12. Два почтальона должны разнести 10 писем по 10 адресам. Сколькими способами они могут распределить работу?

13.2.1.13. Замок открывается только в том случае, если набран определенный трехзначный номер. Попытка состоит в том, что набирают наугад три цифры из заданных пяти. Угадать номер удалось только на последней из всех возможных попыток. Сколько попыток предшествовало удачной?

13.2.1.14. Номер автомобильного прицепа состоит из двух букв и четырех цифр. Сколько различных номеров можно составить, используя 30 букв и 10 цифр?

13.2.1.15. У одного студента есть 7 DVD дисков, а у другого – 9 дисков. Сколькими способами они могут обменять 3 диска одного на 3 диска другого?

13.2.1.16. На вершину горы ведут 7 дорог. Сколькими способами турист может два раза подняться на гору и спуститься с нее, если по одной и той же дороге нельзя проходить дважды?

13.2.1.17. У ювелира было 9 разных драгоценных камней: сапфир, рубин, топаз и т.д. Ювелир планировал изготовить браслет для часов, однако три камня было украдено. Насколько меньше вариантов браслета он может изготовить по сравнению с первоначальными планами?

13.2.1.18. В поезд метро на начальной станции вошли 10 пассажиров. Сколькими способами могут выйти все пассажиры на последующих 6 станциях?

13.2.1.19. За одним столом надо рассадить 5 мальчиков и 5 девочек так, чтобы не было двух рядом сидящих мальчиков и двух рядом сидящих девочек. Сколькими способами это можно сделать?

13.2.1.20. В классе 25 учеников. Верно ли утверждение, что, по крайней мере, у трех из них день рождения в один и тот же месяц?

13.2.1.21. На участке железной дороги расположено 25 станций с билетной кассой в каждой. Касса каждой станции продает билеты до любой другой станции, притом в обоих направлениях. Сколько различных вариантов билетов можно выдать на этом участке?

13.2.1.22. На официальном приеме 50 человек обменялись рукопожатиями. Сколько было сделано рукопожатий?

13.2.1.23. Сколько диагоналей у выпуклого двадцатиугольника?

Уважаемые студенты
На нашем сайте можно получить помощь по всем разделам математики и другим предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

Оцените статью
Разные способы